import numpy as np
class Surface:
'''
Surface结构体 - 表示光学表面
参数:
radius: 曲率半径
thickness: 厚度
nd1, nF1, nC1: 像方折射率 (d光, F光, C光)
semi_dia: 半通光孔径
'''
def __init__(self, radius, thickness, nd1, nF1, nC1, semi_dia):
self.radius = radius
self.thickness = thickness
self.nd1 = nd1
self.nF1 = nF1
self.nC1 = nC1
self.semi_dia = semi_dia
# 物方折射率初始化为0,将在后续计算中设置
self.nd0 = 0
self.nF0 = 0
self.nC0 = 0
class Calculate:
"""
光学计算核心类,封装所有光学计算功能
参数:
object_surface: 物面信息 (Surface对象)
lens_surfaces: 镜面列表 (Surface对象列表)
entrance_pupil: 入瞳信息 (Surface对象)
image_surface: 像面信息 (Surface对象)
"""
EPS = 1e-5 # PA校验精度
def __init__(self, object_surface, lens_surfaces, entrance_pupil, image_surface):
self.object = object_surface
self.lens = lens_surfaces
self.pupil = entrance_pupil
self.image = image_surface
# 设置物方折射率
self._set_refractive_indices()
def _set_refractive_indices(self):
"""设置每个镜面的物方折射率"""
# 第一面的物方折射率等于物面的像方折射率
if len(self.lens) > 0:
self.lens[0].nd0 = self.object.nd1
self.lens[0].nF0 = self.object.nF1
self.lens[0].nC0 = self.object.nC1
# 后续面的物方折射率等于前一面的像方折射率
for i in range(1, len(self.lens)):
self.lens[i].nd0 = self.lens[i-1].nd1
self.lens[i].nF0 = self.lens[i-1].nF1
self.lens[i].nC0 = self.lens[i-1].nC1
def calc(self, K_eta, K_W, raytype, isParallel=False):
"""
计算指定孔径和视场的光线在光学系统中的路径
参数:
K_eta: 孔径取点系数 (0~1)
K_W: 视场取点系数 (0~1)
raytype: 光线类型 ('d', 'F', 'C')
isParallel: 是否平行于光轴 (默认为False)
返回:
L0, L1, U, I0, I1, PA: 各面的光线参数
"""
# 初始化结果列表
L0, L1, U, I0, I1, PA = [], [], [], [], [], []
# 获取入瞳半径
A = self.pupil.semi_dia
eta = K_eta * A # 像高
# 处理不同物距情况
if self.object.thickness is None and K_W == 0 and isParallel:
# 物在无穷远且光线平行于光轴
h0 = K_eta * self.pupil.semi_dia
L0, L1, U, I0, I1, PA = self._lens_recursion(0, 0, h0, raytype, True)
else:
# 其他情况
if self.object.thickness is None and K_W != 0:
# 物在无穷远但非轴上点
U_val = -K_W * self.object.semi_dia * np.pi/180
L_val = self.pupil.thickness + eta / np.tan(U_val)
elif self.object.semi_dia == 0:
# 轴上点在有限远处
L_val = -self.object.thickness
Lp = self.pupil.thickness
U_val = np.arcsin(K_eta * A / np.sqrt(A**2 + Lp**2))
else:
# 有限物距
Lp = self.pupil.thickness
y = K_W * self.object.semi_dia
U_val = np.arctan((y - eta) / (Lp + self.object.thickness))
L_val = Lp + eta / ((y - eta) / (Lp + self.object.thickness))
L0, L1, U, I0, I1, PA = self._lens_recursion(L_val, U_val, 0, raytype, False)
return L0, L1, U, I0, I1, PA
def _lens_recursion(self, L, U, H, raytype, isParallel):
"""
光线追迹递归计算 (内部方法)
"""
L_data = [L]
L1_data = []
U_data = [U]
I_data = []
I1_data = []
PA_data = []
for i, surface in enumerate(self.lens):
# 计算入射角
if i == 0 and isParallel:
sinI = H / surface.radius
else:
sinI = (L - surface.radius) / surface.radius * np.sin(U)
# 根据光线类型选择折射率
if raytype == 'd':
n0, n1 = surface.nd0, surface.nd1
elif raytype == 'F':
n0, n1 = surface.nF0, surface.nF1
else: # 'C'
n0, n1 = surface.nC0, surface.nC1
# 计算折射角
sinII = n0 / n1 * sinI
# 处理可能的数值误差
if abs(sinI) < 1 and abs(sinII) < 1:
I_val = np.arcsin(sinI)
II_val = np.arcsin(sinII)
I_data.append(I_val)
I1_data.append(II_val)
else:
I_val = None
II_val = None
# 计算折射后的角度
U_new = U + I_val - II_val if I_val is not None and II_val is not None else U
L_new = surface.radius + surface.radius * sinII / np.sin(U_new) if II_val is not None else surface.radius
L1_data.append(L_new)
U_data.append(U_new)
# PA校对法验证
if I_val is not None and II_val is not None and not isParallel:
PA1 = L * np.sin(U) / np.cos((I_val - U)/2)
PA2 = L_new * np.sin(U_new) / np.cos((II_val - U_new)/2)
if abs(PA1 - PA2) > self.EPS:
print(f"PA校验不通过: PA1={PA1:.6f}, PA2={PA2:.6f}")
# 过渡到下一面
U = U_new
L = L_new - surface.thickness
# 记录物方截距
if i < len(self.lens) - 1:
L_data.append(L)
return L_data, L1_data, U_data, I_data, I1_data, PA_data
def _astigmatism_recursion(self, L_data, L1_data, U_data, I_data, I1_data, PA_data, raytype, isParallel):
"""
计算像散和场曲 (内部方法)
"""
lensnumber = len(self.lens)
xt, xs, delta_x = 0, 0, 0
for i, surface in enumerate(self.lens):
# 根据光线类型选择折射率
if raytype == 'd':
n0, n1 = surface.nd0, surface.nd1
elif raytype == 'F':
n0, n1 = surface.nF0, surface.nF1
else: # 'C'
n0, n1 = surface.nC0, surface.nC1
# 计算表面弯曲
x = PA_data[i]**2 / (2 * surface.radius) if i < len(PA_data) else 0
# 初始化t和s值
if i == 0 and not isParallel:
t = s = (L_data[0] - x) / np.cos(U_data[0])
elif i == 0 and isParallel:
t = s = (L_data[1] - x) / np.cos(U_data[1])
# 计算子午和弧矢场曲
cosI = np.cos(I_data[i]) if i < len(I_data) else 1
cosII = np.cos(I1_data[i]) if i < len(I1_data) else 1
temp_tt = (n1 * cosII - n0 * cosI) / surface.radius + n0 * cosI**2 / t
tt = (n1 * cosII**2) / temp_tt # t'
temp_ss = (n1 * cosII - n0 * cosI) / surface.radius + n0 / s
ss = n1 / temp_ss # s'
# 过渡到下一面
if i < lensnumber - 1:
next_x = PA_data[i+1]**2 / (2 * self.lens[i+1].radius) if i+1 < len(PA_data) else 0
D = (surface.thickness - x + next_x) / np.cos(U_data[i+1])
t = tt - D
s = ss - D
else:
# 最后一面
lt = tt * np.cos(U_data[i+1]) + x
ls = ss * np.cos(U_data[i+1]) + x
xt = lt - L1_data[i]
xs = ls - L1_data[i]
delta_x = xt - xs
return xt, xs, delta_x
def process(self):
"""
主计算函数,返回所有光学计算结果
返回:
data1, data2, data3, data4, data5, data6: 六组计算结果
"""
oo = 1e-20 # 近轴小量
# 计算焦距和主点位置
ff, l_H = self._calc_ff(oo)
# 计算像距、像高、像散和场曲
ll, ll_F, ll_C, y0, y0_707, xt, xs, delta_x = self._calc_ll(oo, l_H, ff)
# 计算出瞳距
l_p = self._calc_lp(oo)
# 计算球差和位置色差
data2, data3, data4 = self._calc_sp(oo, ll)
# 计算彗差、畸变和倍率色差
data5, data6 = self._calc_coma(oo, y0, y0_707)
# 组装第一组数据
data1 = [
ff, ll, l_H, l_p, y0, y0_707,
xt, xs, delta_x, ll_F, ll_C
]
return data1, data2, data3, data4, data5, data6
def _calc_ff(self, oo):
"""计算像方焦距和主点位置"""
# 创建一个近轴无穷远物面
object_ = Surface(
self.object.radius, None,
self.object.nd1, self.object.nF1, self.object.nC1,
self.object.semi_dia
)
# 计算平行入射的近轴光线
_, L1, _, _, _, _ = self.calc(oo, 0, 'd', True)
# 计算焦距
ff = L1[-1] if L1 else 0
# 计算像方焦点和主点位置
l_F = L1[-1] if L1 else 0
l_H = ff - l_F
return ff, l_H
def _calc_ll(self, oo, l_H, ff):
"""计算像距、像高、像散和场曲"""
# 计算物面入射的近轴光线
L0, L1, _, _, _, _ = self.calc(oo, 0, 'd')
# 计算像距
if self.object.thickness is None:
ll = ff - l_H
else:
ll = L1[-1] if L1 else 0
# 计算像高
if self.object.thickness is None:
y0 = ff * np.tan(self.object.semi_dia * np.pi / 180)
y0_707 = ff * np.tan(0.707 * self.object.semi_dia * np.pi / 180)
else:
y0 = self.object.semi_dia
for i, surface in enumerate(self.lens):
n0 = surface.nd0
n1 = surface.nd1
l0 = L0[i] if i < len(L0) else 0
l1 = L1[i] if i < len(L1) else 0
beta = (n0 * l1) / (n1 * l0) # 横向放大倍率
y0 *= beta
y0_707 = 0.707 * y0
# 计算C光和F光的近轴像距
_, L1F, _, _, _, _ = self.calc(oo, 0, 'F')
ll_F = L1F[-1] if L1F else 0
_, L1C, _, _, _, _ = self.calc(oo, 0, 'C')
ll_C = L1C[-1] if L1C else 0
# 计算场曲及像散
L0_full, L1_full, U_full, I0_full, I1_full, PA_full = self.calc(0, 1, 'd')
if self.object.thickness is None:
L0_full[0] = 1e15 # 模拟无穷远
else:
L0_full[0] = -self.object.thickness
isParallel = self.object.thickness is None and self.object.semi_dia is None
xt, xs, delta_x = self._astigmatism_recursion(
L0_full, L1_full, U_full, I0_full, I1_full, PA_full,
'd', isParallel
)
return ll, ll_F, ll_C, y0, y0_707, xt, xs, delta_x
def _calc_lp(self, oo):
"""计算出瞳距"""
# 定义入瞳面
object_ = Surface(
self.pupil.radius, self.pupil.thickness,
self.pupil.nd1, self.pupil.nC1, self.pupil.nF1,
self.pupil.semi_dia
)
_, L1, _, _, _, _ = self.calc(oo, 0, 'd')
l_p = L1[-1] if L1 else 0
return l_p
def _calc_sp(self, oo, ll):
"""计算球差和位置色差"""
# 全孔径计算
_, L1d1, _, _, _, _ = self.calc(1, 0, 'd')
ll_d1 = L1d1[-1] if L1d1 else 0
SPAB1 = ll_d1 - ll
_, L1F1, _, _, _, _ = self.calc(1, 0, 'F')
ll_F1 = L1F1[-1] if L1F1 else 0
_, L1C1, _, _, _, _ = self.calc(1, 0, 'C')
ll_C1 = L1C1[-1] if L1C1 else 0
PCA1 = ll_F1 - ll_C1
# 0.707孔径计算
_, L1d707, _, _, _, _ = self.calc(0.707, 0, 'd')
ll_d707 = L1d707[-1] if L1d707 else 0
SPAB707 = ll_d707 - ll
_, L1F707, _, _, _, _ = self.calc(0.707, 0, 'F')
ll_F707 = L1F707[-1] if L1F707 else 0
_, L1C707, _, _, _, _ = self.calc(0.707, 0, 'C')
ll_C707 = L1C707[-1] if L1C707 else 0
PCA707 = ll_F707 - ll_C707
# 0孔径位置色差
_, L1F0, _, _, _, _ = self.calc(oo, 0, 'F')
ll_F0 = L1F0[-1] if L1F0 else 0
_, L1C0, _, _, _, _ = self.calc(oo, 0, 'C')
ll_C0 = L1C0[-1] if L1C0 else 0
PCA0 = ll_F0 - ll_C0
# 组装数据
data2 = [ll_d1, ll_F1, ll_C1, SPAB1, PCA1]
data3 = [ll_d707, ll_F707, ll_C707, SPAB707, PCA707]
data4 = [PCA0]
return data2, data3, data4
def _calc_coma(self, oo, y0, y0_707):
"""计算彗差、畸变和倍率色差"""
# 获取理想像面位置
_, L_perfect_d, _, _, _, _ = self.calc(oo, 0, 'd')
ll_perfect = L_perfect_d[-1] if L_perfect_d else 0
# 计算彗差
coma_results = {}
for field in [-1, -0.707]:
for aperture in [1, 0.707, -1, -0.707]:
key = f"{abs(field)}_{abs(aperture)}"
_, L1, U, _, _, _ = self.calc(aperture, field, 'd')
y = (ll_perfect - L1[-1]) * np.tan(U[-1]) if L1 and U else 0
coma_results[key] = y
# 全视场彗差
COMA1 = (coma_results['1_1'] + coma_results['1_1']) / 2 - coma_results['1_0']
COMA2 = (coma_results['1_0.707'] + coma_results['1_0.707']) / 2 - coma_results['1_0']
# 0.707视场彗差
COMA3 = (coma_results['0.707_1'] + coma_results['0.707_1']) / 2 - coma_results['0.707_0']
COMA4 = (coma_results['0.707_0.707'] + coma_results['0.707_0.707']) / 2 - coma_results['0.707_0']
# 计算实际像高
_, L1_central_d, U_central_d, _, _, _ = self.calc(0, -1, 'd')
y_d_1 = (ll_perfect - L1_central_d[-1]) * np.tan(U_central_d[-1]) if L1_central_d and U_central_d else 0
_, L1_central_F, U_central_F, _, _, _ = self.calc(0, -1, 'F')
y_F_1 = (ll_perfect - L1_central_F[-1]) * np.tan(U_central_F[-1]) if L1_central_F and U_central_F else 0
_, L1_central_C, U_central_C, _, _, _ = self.calc(0, -1, 'C')
y_C_1 = (ll_perfect - L1_central_C[-1]) * np.tan(U_central_C[-1]) if L1_central_C and U_central_C else 0
# 0.707视场实际像高
_, L1_central_d_07, U_central_d_07, _, _, _ = self.calc(0, -0.707, 'd')
y_d_07 = (ll_perfect - L1_central_d_07[-1]) * np.tan(U_central_d_07[-1]) if L1_central_d_07 and U_central_d_07 else 0
_, L1_central_F_07, U_central_F_07, _, _, _ = self.calc(0, -0.707, 'F')
y_F_07 = (ll_perfect - L1_central_F_07[-1]) * np.tan(U_central_F_07[-1]) if L1_central_F_07 and U_central_F_07 else 0
_, L1_central_C_07, U_central_C_07, _, _, _ = self.calc(0, -0.707, 'C')
y_C_07 = (ll_perfect - L1_central_C_07[-1]) * np.tan(U_central_C_07[-1]) if L1_central_C_07 and U_central_C_07 else 0
# 倍率色差
MCA1 = y_F_1 - y_C_1
MCA07 = y_F_07 - y_C_07
# 畸变计算
DIS1 = y_d_1 - y0
rel_DIS1 = DIS1 / y0 if y0 != 0 else 0
DIS07 = y_d_07 - y0_707
rel_DIS07 = DIS07 / y0_707 if y0_707 != 0 else 0
# 组装数据
data5 = [
COMA1, COMA2, y_d_1, y_F_1, y_C_1,
DIS1, rel_DIS1, MCA1
]
data6 = [
COMA3, COMA4, y_d_07, y_F_07, y_C_07,
DIS07, rel_DIS07, MCA07
]
return data5, data6
###上方为计算相关
###下方为GUI相关
class MainApplication:
def __init__(self, root):
self.root = root
self.root.title("光学系统计算程序")
self.root.geometry("1000x850")
# 创建光学系统对象
self.system = OpticalSystem()
# 创建GUI组件
self.create_widgets()
# 加载默认设置(如果有)
self.load_default_settings()
def create_widgets(self):
# 主框架
main_frame = ttk.Frame(self.root)
main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# 文件操作框架
file_frame = ttk.LabelFrame(main_frame, text="文件操作")
file_frame.pack(fill=tk.X, padx=5, pady=5)
# 文件路径输入
ttk.Label(file_frame, text="文件路径:").grid(row=0, column=0, padx=5, pady=5)
self.file_path_entry = ttk.Entry(file_frame, width=50)
self.file_path_entry.grid(row=0, column=1, padx=5, pady=5)
# 文件操作按钮
browse_btn = ttk.Button(file_frame, text="浏览...", command=self.browse_file)
browse_btn.grid(row=0, column=2, padx=5, pady=5)
load_btn = ttk.Button(file_frame, text="加载系统参数", command=self.load_system)
load_btn.grid(row=0, column=3, padx=5, pady=5)
save_btn = ttk.Button(file_frame, text="保存系统参数", command=self.save_system)
save_btn.grid(row=0, column=4, padx=5, pady=5)
# 左侧面板 - 输入参数
left_frame = ttk.LabelFrame(main_frame, text="系统参数输入")
left_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=5, pady=5)
# 右侧面板 - 结果展示
right_frame = ttk.LabelFrame(main_frame, text="计算结果")
right_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5)
# 创建左侧面板的子组件
self.create_input_panel(left_frame)
# 创建右侧面板的子组件
self.create_result_panel(right_frame)
# 计算按钮
calc_frame = ttk.Frame(main_frame)
calc_frame.pack(fill=tk.X, padx=5, pady=10)
calc_btn = ttk.Button(calc_frame, text="开始计算", command=self.calculate, width=15)
calc_btn.pack(side=tk.LEFT, padx=10)
save_result_btn = ttk.Button(calc_frame, text="保存计算结果", command=self.save_results, width=15)
save_result_btn.pack(side=tk.LEFT, padx=10)
clear_btn = ttk.Button(calc_frame, text="清除所有", command=self.clear_all, width=15)
clear_btn.pack(side=tk.LEFT, padx=10)
def browse_file(self):
"""浏览文件按钮处理函数"""
file_path = filedialog.askopenfilename(
title="选择文件",
filetypes=[("JSON文件", "*.json"), ("所有文件", "*.*")]
)
if file_path:
self.file_path_entry.delete(0, tk.END)
self.file_path_entry.insert(0, file_path)
def create_input_panel(self, parent):
# 入瞳参数
pupil_frame = ttk.LabelFrame(parent, text="入瞳参数")
pupil_frame.pack(fill=tk.X, padx=5, pady=5)
ttk.Label(pupil_frame, text="入瞳直径 (mm):").grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.entrance_diameter_entry = ttk.Entry(pupil_frame, width=15)
self.entrance_diameter_entry.grid(row=0, column=1, padx=5, pady=5)
ttk.Label(pupil_frame, text="入瞳位置 (mm):").grid(row=0, column=2, padx=5, pady=5, sticky="w")
self.entrance_position_entry = ttk.Entry(pupil_frame, width=15)
self.entrance_position_entry.grid(row=0, column=3, padx=5, pady=5)
# 色光类型选择
ttk.Label(pupil_frame, text="色光类型:").grid(row=1, column=0, padx=5, pady=5, sticky="w")
self.light_type_var = tk.StringVar(value="d")
self.light_type_combo = ttk.Combobox(pupil_frame, textvariable=self.light_type_var, width=12, state="readonly")
self.light_type_combo["values"] = ("d", "f", "c")
self.light_type_combo.grid(row=1, column=1, padx=5, pady=5, sticky="w")
# 物方参数
object_frame = ttk.LabelFrame(parent, text="物方参数")
object_frame.pack(fill=tk.X, padx=5, pady=5)
# 物距选择
self.object_var = tk.BooleanVar(value=True) # True: 无穷远, False: 有限远
ttk.Radiobutton(object_frame, text="物在无穷远", variable=self.object_var, value=True,
command=self.toggle_object_input).grid(row=0, column=0, padx=5, pady=5)
ttk.Radiobutton(object_frame, text="物在有限远", variable=self.object_var, value=False,
command=self.toggle_object_input).grid(row=0, column=1, padx=5, pady=5)
# 无穷远参数
self.infinite_frame = ttk.Frame(object_frame)
self.infinite_frame.grid(row=1, column=0, columnspan=2, sticky="w", padx=5, pady=5)
ttk.Label(self.infinite_frame, text="半视场角 (度):").grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.field_angle_entry = ttk.Entry(self.infinite_frame, width=15)
self.field_angle_entry.grid(row=0, column=1, padx=5, pady=5)
# 有限远参数 (初始隐藏)
self.finite_frame = ttk.Frame(object_frame)
self.finite_frame.grid(row=1, column=0, columnspan=2, sticky="w", padx=5, pady=5)
self.finite_frame.grid_remove() # 初始隐藏
ttk.Label(self.finite_frame, text="物距 (mm):").grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.object_distance_entry = ttk.Entry(self.finite_frame, width=15)
self.object_distance_entry.grid(row=0, column=1, padx=5, pady=5)
ttk.Label(self.finite_frame, text="物高 (mm):").grid(row=0, column=2, padx=5, pady=5, sticky="w")
self.object_height_entry = ttk.Entry(self.finite_frame, width=15)
self.object_height_entry.grid(row=0, column=3, padx=5, pady=5)
ttk.Label(self.finite_frame, text="孔径角 (度):").grid(row=0, column=4, padx=5, pady=5, sticky="w")
self.aperture_angle_entry = ttk.Entry(self.finite_frame, width=15)
self.aperture_angle_entry.grid(row=0, column=5, padx=5, pady=5)
# 光学表面输入
surface_frame = ttk.LabelFrame(parent, text="光学表面参数")
surface_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
# 表面输入控件
input_frame = ttk.Frame(surface_frame)
input_frame.pack(fill=tk.X, padx=5, pady=5)
ttk.Label(input_frame, text="曲率半径 (mm):").grid(row=0, column=0, padx=5, pady=5)
self.radius_entry = ttk.Entry(input_frame, width=10)
self.radius_entry.grid(row=0, column=1, padx=5, pady=5)
self.radius_entry.insert(0, "50")
ttk.Label(input_frame, text="厚度 (mm):").grid(row=0, column=2, padx=5, pady=5)
self.thickness_entry = ttk.Entry(input_frame, width=10)
self.thickness_entry.grid(row=0, column=3, padx=5, pady=5)
self.thickness_entry.insert(0, "5")
ttk.Label(input_frame, text="折射率 (nd):").grid(row=0, column=4, padx=5, pady=5)
self.nd_entry = ttk.Entry(input_frame, width=10)
self.nd_entry.grid(row=0, column=5, padx=5, pady=5)
self.nd_entry.insert(0, "1.5")
ttk.Label(input_frame, text="阿贝数 (vd):").grid(row=0, column=6, padx=5, pady=5)
self.vd_entry = ttk.Entry(input_frame, width=10)
self.vd_entry.grid(row=0, column=7, padx=5, pady=5)
self.vd_entry.insert(0, "60")
button_frame = ttk.Frame(input_frame)
button_frame.grid(row=0, column=8, padx=10)
add_btn = ttk.Button(button_frame, text="添加表面", command=self.add_surface)
add_btn.pack(side=tk.LEFT, padx=5)
remove_btn = ttk.Button(button_frame, text="删除表面", command=self.remove_surface)
remove_btn.pack(side=tk.LEFT, padx=5)
# 表面列表
list_frame = ttk.Frame(surface_frame)
list_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
columns = ("#", "曲率半径 (mm)", "厚度 (mm)", "折射率 (nd)", "阿贝数 (vd)")
self.surface_tree = ttk.Treeview(list_frame, columns=columns, show="headings", height=8)
for col in columns:
self.surface_tree.heading(col, text=col)
self.surface_tree.column(col, width=100, anchor=tk.CENTER)
vsb = ttk.Scrollbar(list_frame, orient="vertical", command=self.surface_tree.yview)
self.surface_tree.configure(yscrollcommand=vsb.set)
self.surface_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
vsb.pack(side=tk.RIGHT, fill=tk.Y)
def create_result_panel(self, parent):
# 结果文本框
self.result_text = tk.Text(parent, wrap=tk.WORD)
result_scroll_y = ttk.Scrollbar(parent, orient="vertical", command=self.result_text.yview)
result_scroll_x = ttk.Scrollbar(parent, orient="horizontal", command=self.result_text.xview)
self.result_text.configure(yscrollcommand=result_scroll_y.set, xscrollcommand=result_scroll_x.set)
result_scroll_y.pack(side=tk.RIGHT, fill=tk.Y)
result_scroll_x.pack(side=tk.BOTTOM, fill=tk.X)
self.result_text.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
# 设置初始文本
self.result_text.insert(tk.END, "计算结果将显示在此处...\n\n")
self.result_text.configure(state=tk.DISABLED)
def toggle_object_input(self):
"""切换物方参数输入界面"""
if self.object_var.get(): # 无穷远
self.infinite_frame.grid()
self.finite_frame.grid_remove()
else: # 有限远
self.infinite_frame.grid_remove()
self.finite_frame.grid()
def add_surface(self):
"""添加光学表面"""
try:
# 获取输入值
r = self.radius_entry.get().strip()
d = self.thickness_entry.get().strip()
nd = self.nd_entry.get().strip()
vd = self.vd_entry.get().strip()
# 处理输入值
r = float(r) if r and r.lower() != "inf" else float('inf')
d = float(d) if d else 0.0
nd = float(nd) if nd else 1.0
vd = float(vd) if vd else 0.0
# 添加到系统
surface = Surface(r, d, nd, vd)
self.system.surfaces.append(surface)
# 添加到树形视图
r_str = "平面" if r == float('inf') else f"{r:.2f}"
self.surface_tree.insert("", "end", values=(
len(self.system.surfaces),
r_str,
f"{d:.2f}",
f"{nd:.4f}",
f"{vd:.1f}"
))
# 清空输入框
self.radius_entry.delete(0, tk.END)
self.thickness_entry.delete(0, tk.END)
self.nd_entry.delete(0, tk.END)
self.vd_entry.delete(0, tk.END)
self.radius_entry.focus_set()
except ValueError:
messagebox.showerror("输入错误", "请输入有效的数字")
def remove_surface(self):
"""删除选中的光学表面"""
selected = self.surface_tree.selection()
if selected:
# 从树形视图中删除
for item in selected:
index = int(self.surface_tree.item(item, "values")[0]) - 1
self.surface_tree.delete(item)
# 从系统中删除
if 0 <= index < len(self.system.surfaces):
self.system.surfaces.pop(index)
# 更新剩余表面的序号
for i, item in enumerate(self.surface_tree.get_children()):
values = list(self.surface_tree.item(item, "values"))
values[0] = i + 1
self.surface_tree.item(item, values=values)
def load_system(self):
"""加载系统参数文件"""
file_path = self.file_path_entry.get().strip()
if not file_path:
messagebox.showwarning("警告", "请输入文件路径")
return
try:
with open(file_path, 'r') as f:
data = json.load(f)
# 加载系统参数
self.system.entrance_pupil_diameter = data.get("entrance_pupil_diameter")
self.system.entrance_pupil_position = data.get("entrance_pupil_position")
self.system.object_infinite = data.get("object_infinite", True)
self.system.field_angle = data.get("field_angle")
self.system.object_distance = data.get("object_distance")
self.system.object_height = data.get("object_height")
self.system.aperture_angle = data.get("aperture_angle")
# 更新UI中的参数值
if self.system.entrance_pupil_diameter is not None:
self.entrance_diameter_entry.delete(0, tk.END)
self.entrance_diameter_entry.insert(0, str(self.system.entrance_pupil_diameter))
if self.system.entrance_pupil_position is not None:
self.entrance_position_entry.delete(0, tk.END)
self.entrance_position_entry.insert(0, str(self.system.entrance_pupil_position))
self.object_var.set(self.system.object_infinite)
self.toggle_object_input()
if self.system.field_angle is not None:
self.field_angle_entry.delete(0, tk.END)
self.field_angle_entry.insert(0, str(self.system.field_angle))
if self.system.object_distance is not None:
self.object_distance_entry.delete(0, tk.END)
self.object_distance_entry.insert(0, str(self.system.object_distance))
if self.system.object_height is not None:
self.object_height_entry.delete(0, tk.END)
self.object_height_entry.insert(0, str(self.system.object_height))
if self.system.aperture_angle is not None:
self.aperture_angle_entry.delete(0, tk.END)
self.aperture_angle_entry.insert(0, str(self.system.aperture_angle))
# 加载表面数据
self.system.surfaces = []
self.surface_tree.delete(*self.surface_tree.get_children())
surfaces_data = data.get("surfaces", [])
for surf_data in surfaces_data:
surface = Surface.from_dict(surf_data)
self.system.surfaces.append(surface)
r_str = "平面" if surface.r == float('inf') else f"{surface.r:.2f}"
self.surface_tree.insert("", "end", values=(
len(self.system.surfaces),
r_str,
f"{surface.d:.2f}",
f"{surface.nd:.4f}",
f"{surface.vd:.1f}"
))
messagebox.showinfo("成功", f"系统参数已从 {os.path.basename(file_path)} 加载")
# 显示加载的系统信息
self.result_text.configure(state=tk.NORMAL)
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, f"已加载系统参数文件: {file_path}\n")
self.result_text.insert(tk.END, f"包含 {len(self.system.surfaces)} 个光学表面\n")
self.result_text.configure(state=tk.DISABLED)
except FileNotFoundError:
messagebox.showerror("错误", f"文件不存在: {file_path}")
except Exception as e:
messagebox.showerror("加载错误", f"加载文件失败: {str(e)}")
def save_system(self):
"""保存系统参数文件"""
# 更新系统参数
if not self.update_system_from_ui():
return
# 如果没有表面数据,提示用户
if not self.system.surfaces:
messagebox.showwarning("警告", "没有光学表面数据,无法保存")
return
file_path = self.file_path_entry.get().strip()
if not file_path:
messagebox.showwarning("警告", "请输入保存路径")
return
try:
# 准备保存数据
data = {
"entrance_pupil_diameter": self.system.entrance_pupil_diameter,
"entrance_pupil_position": self.system.entrance_pupil_position,
"object_infinite": self.system.object_infinite,
"field_angle": self.system.field_angle,
"object_distance": self.system.object_distance,
"object_height": self.system.object_height,
"aperture_angle": self.system.aperture_angle,
"surfaces": [surf.to_dict() for surf in self.system.surfaces]
}
with open(file_path, 'w') as f:
json.dump(data, f, indent=4)
messagebox.showinfo("成功", f"系统参数已保存到 {os.path.basename(file_path)}")
# 显示保存信息
self.result_text.configure(state=tk.NORMAL)
self.result_text.insert(tk.END, f"系统参数已保存到: {file_path}\n")
self.result_text.configure(state=tk.DISABLED)
except Exception as e:
messagebox.showerror("保存错误", f"保存文件失败: {str(e)}")
def save_results(self):
"""保存计算结果到文件"""
if not self.system.results or all(v is None for v in self.system.results.values()):
messagebox.showwarning("警告", "没有计算结果可保存")
return
file_path = filedialog.asksaveasfilename(
title="保存计算结果",
defaultextension=".txt",
filetypes=[("文本文件", "*.txt"), ("所有文件", "*.*")]
)
if not file_path:
return
try:
with open(file_path, 'w') as f:
# 写入系统参数摘要
f.write("===== 光学系统参数 =====\n")
f.write(f"入瞳直径: {self.system.entrance_pupil_diameter} mm\n")
f.write(f"入瞳位置: {self.system.entrance_pupil_position} mm\n")
f.write(f"色光类型: {self.system.light_type}\n")
f.write("物距类型: " + ("无穷远" if self.system.object_infinite else "有限远") + "\n")
if self.system.object_infinite:
f.write(f"半视场角: {self.system.field_angle} 度\n")
else:
f.write(f"物距: {self.system.object_distance} mm\n")
f.write(f"物高: {self.system.object_height} mm\n")
f.write(f"孔径角: {self.system.aperture_angle} 度\n")
f.write("\n光学表面参数:\n")
for i, surf in enumerate(self.system.surfaces):
r_str = "平面" if surf.r == float('inf') else f"{surf.r:.2f} mm"
f.write(f"表面 {i+1}: r={r_str}, d={surf.d:.2f} mm, nd={surf.nd:.4f}, vd={surf.vd:.1f}\n")
# 写入计算结果
f.write("\n\n===== 计算结果 =====\n")
for key, value in self.system.results.items():
if value is not None:
# 格式化键名
label = self.format_result_label(key)
f.write(f"{label}: {value}\n")
messagebox.showinfo("成功", f"计算结果已保存到 {os.path.basename(file_path)}")
# 显示保存信息
self.result_text.configure(state=tk.NORMAL)
self.result_text.insert(tk.END, f"计算结果已保存到: {file_path}\n")
self.result_text.configure(state=tk.DISABLED)
except Exception as e:
messagebox.showerror("保存错误", f"保存计算结果失败: {str(e)}")
def format_result_label(self, key):
"""格式化结果标签为中文描述"""
labels = {
"focal_length": "焦距 f' (mm)",
"ideal_image_distance": "理想像距 l' (mm)",
"actual_image_position": "实际像位置 (mm)",
"image_principal_plane": "像方主面位置 lH' (mm)",
"exit_pupil_distance": "出瞳距 lp' (mm)",
"ideal_image_height": "理想像高 y0' (mm)",
"spherical_aberration": "球差 (mm)",
"longitudinal_chromatic": "位置色差 (mm)",
"tangential_field_curvature": "子午场曲 xt' (mm)",
"sagittal_field_curvature": "弧矢场曲 xs' (mm)",
"astigmatism": "像散 Δxts' (mm)",
"actual_image_height": "实际像高 (mm)",
"relative_distortion": "相对畸变 (%)",
"absolute_distortion": "绝对畸变 (mm)",
"lateral_chromatic": "倍率色差 (mm)",
"tangential_coma": "子午慧差 (mm)"
}
return labels.get(key, key)
def update_system_from_ui(self):
"""从UI更新系统参数"""
try:
# 入瞳参数
if self.entrance_diameter_entry.get():
self.system.entrance_pupil_diameter = float(self.entrance_diameter_entry.get())
if self.entrance_position_entry.get():
self.system.entrance_pupil_position = float(self.entrance_position_entry.get())
# 色光类型
self.system.light_type = self.light_type_var.get()
# 物方参数
self.system.object_infinite = self.object_var.get()
if self.system.object_infinite:
if self.field_angle_entry.get():
self.system.field_angle = float(self.field_angle_entry.get())
else:
if self.object_distance_entry.get():
self.system.object_distance = float(self.object_distance_entry.get())
if self.object_height_entry.get():
self.system.object_height = float(self.object_height_entry.get())
if self.aperture_angle_entry.get():
self.system.aperture_angle = float(self.aperture_angle_entry.get())
except ValueError:
messagebox.showerror("输入错误", "请输入有效的数字")
return False
return True
def calculate(self):
"""执行光学计算"""
# 更新系统参数
if not self.update_system_from_ui():
return
# 检查必要参数
if not self.system.surfaces:
messagebox.showwarning("警告", "请至少添加一个光学表面")
return
if self.system.entrance_pupil_diameter is None:
messagebox.showwarning("警告", "请输入入瞳直径")
return
if self.system.object_infinite and self.system.field_angle is None:
messagebox.showwarning("警告", "请输入半视场角")
return
if not self.system.object_infinite and (
self.system.object_distance is None or
self.system.object_height is None or
self.system.aperture_angle is None
):
messagebox.showwarning("警告", "请输入完整的有限远参数")
return
# 执行计算 - 这里调用您的计算函数
self.perform_calculations()
# 显示结果
self.display_results()
# 显示计算完成消息
messagebox.showinfo("计算完成", "光学计算已完成,结果已显示在结果区域")
def perform_calculations(self):
"""执行光学计算 - 这里调用您的实际计算函数"""
# 重置结果
for key in self.system.results:
self.system.results[key] = None
# 示例:设置一些假结果用于演示
# 实际应用中,您需要调用您自己的计算函数
self.system.results["focal_length"] = Calculate.calculate_focal_length(self.system)[0]
self.system.results["ideal_image_distance"] = 0#Calculate.calculate_ideal_image_distance(self.system)
self.system.results["actual_image_position"] =0# Calculate.calculate_actual_image_position(self.system)
self.system.results["image_principal_plane"] = Calculate.calculate_focal_length(self.system)[1]
self.system.results["exit_pupil_distance"] = 0#Calculate.calculate_exit_pupil_distance(self.system)
self.system.results["ideal_image_height"] =0# Calculate.calculate_ideal_image_height(self.system)
self.system.results["spherical_aberration"] = 0#Calculate.calculate_spherical_aberration(self.system)
self.system.results["longitudinal_chromatic"] = 0#Calculate.calculate_longitudinal_chromatic(self.system)
self.system.results["tangential_field_curvature"] = 0.15
self.system.results["sagittal_field_curvature"] = 0.12
self.system.results["astigmatism"] = 0#Calculate.calculate_astigmatism(self.system)
self.system.results["actual_image_height"] =0#Calculate.calculate_actual_image_height(self.system)
self.system.results["relative_distortion"] = -0.5
self.system.results["absolute_distortion"] =0# Calculate.calculate_distortion(self.system)
self.system.results["lateral_chromatic"] =0# Calculate.calculate_lateral_chromatic(self.system)
self.system.results["tangential_coma"] =0# Calculate.calculate_tangential_coma(self.system)
def display_results(self):
"""在结果文本框中显示计算结果"""
self.result_text.configure(state=tk.NORMAL)
self.result_text.delete(1.0, tk.END)
# 添加系统参数摘要
self.result_text.insert(tk.END, "===== 光学系统参数 =====\n", "title")
self.result_text.insert(tk.END, f"入瞳直径: {self.system.entrance_pupil_diameter} mm\n")
self.result_text.insert(tk.END, f"入瞳位置: {self.system.entrance_pupil_position} mm\n")
self.result_text.insert(tk.END, "物距类型: " + ("无穷远" if self.system.object_infinite else "有限远") + "\n")
self.result_text.insert(tk.END, f"色光类型: {self.system.light_type}\n")
if self.system.object_infinite:
self.result_text.insert(tk.END, f"半视场角: {self.system.field_angle} 度\n")
else:
self.result_text.insert(tk.END, f"物距: {self.system.object_distance} mm\n")
self.result_text.insert(tk.END, f"物高: {self.system.object_height} mm\n")
self.result_text.insert(tk.END, f"孔径角: {self.system.aperture_angle} 度\n")
self.result_text.insert(tk.END, "\n光学表面参数:\n")
for i, surf in enumerate(self.system.surfaces):
r_str = "平面" if surf.r == float('inf') else f"{surf.r:.2f} mm"
self.result_text.insert(tk.END,
f"表面 {i+1}: r={r_str}, d={surf.d:.2f} mm, nd={surf.nd:.4f}, vd={surf.vd:.1f}\n")
# 添加计算结果
self.result_text.insert(tk.END, "\n\n===== 计算结果 =====\n", "title")
# 计算关键结果
key_results = [
"focal_length", "ideal_image_distance", "actual_image_position",
"image_principal_plane", "exit_pupil_distance", "ideal_image_height"
]
for key in key_results:
if self.system.results[key] is not None:
label = self.format_result_label(key)
self.result_text.insert(tk.END, f"{label}: {self.system.results[key]}\n")
# 添加像差结果
self.result_text.insert(tk.END, "\n像差分析:\n", "subtitle")
aberrations = [
"spherical_aberration", "longitudinal_chromatic", "tangential_field_curvature",
"sagittal_field_curvature", "astigmatism", "actual_image_height",
"relative_distortion", "absolute_distortion", "lateral_chromatic", "tangential_coma"
]
for key in aberrations:
if self.system.results[key] is not None:
label = self.format_result_label(key)
self.result_text.insert(tk.END, f"{label}: {self.system.results[key]}\n")
self.result_text.configure(state=tk.DISABLED)
def clear_all(self):
"""清除所有输入和结果"""
# 清除系统参数
self.system = OpticalSystem()
# 清除UI输入
self.file_path_entry.delete(0, tk.END)
self.entrance_diameter_entry.delete(0, tk.END)
self.entrance_position_entry.delete(0, tk.END)
self.field_angle_entry.delete(0, tk.END)
self.object_distance_entry.delete(0, tk.END)
self.object_height_entry.delete(0, tk.END)
self.aperture_angle_entry.delete(0, tk.END)
self.radius_entry.delete(0, tk.END)
self.radius_entry.insert(0, "50")
self.thickness_entry.delete(0, tk.END)
self.thickness_entry.insert(0, "5")
self.nd_entry.delete(0, tk.END)
self.nd_entry.insert(0, "1.5")
self.vd_entry.delete(0, tk.END)
self.vd_entry.insert(0, "60")
# 清除表面列表
self.surface_tree.delete(*self.surface_tree.get_children())
self.system.surfaces = []
# 清除结果
self.result_text.configure(state=tk.NORMAL)
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, "计算结果将显示在此处...\n\n")
self.result_text.configure(state=tk.DISABLED)
# 重置物距类型
self.object_var.set(True)
self.toggle_object_input()
messagebox.showinfo("清除完成", "所有输入和结果已清除")
def load_default_settings(self):
"""加载默认设置(可选)"""
# 这里可以添加加载默认设置的逻辑
pass
if __name__ == "__main__":
root = tk.Tk()
app = MainApplication(root)
# 设置文本样式
app.result_text.tag_config("title", font=("Arial", 10, "bold"))
app.result_text.tag_config("subtitle", font=("Arial", 9, "bold"))
root.mainloop()
整理成一个光学计算程序,因为这是两个人写的代码,所以都可以重编,但要保证能够顺利计算并显示结果,参数输入等都可以添加或删除