manacher
题目链接:https://vjudge.net/problem/22336/origin
Now, you are given a string S. We want to know how many distinct substring of S which is palindrome.
Input
The first line of the input contains a single integer T(T<=20), which indicates number of test cases.
Each test case consists of a string S, whose length is less than 100000 and only contains lowercase letters.
Output
For every test case, you should output “Case #k:” first in a single line, where k indicates the case number and starts at 1. Then output the number of distinct substring of S which is palindrome.
Sample Input
3
aaaa
abab
abcd
Sample Output
Case #1: 4
Case #2: 4
Case #3: 4
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define D1 28
#define D2 38
using namespace std;
const int MOD1=300137;
const int MOD2=17707;
const int MOD3=1e9+7;
const int MOD4=1e9+9;
char s[200011],a[100011];
int p[200011],len,l,ans;
int f1[200011],g1[200011];
int f2[200011],g2[200011];
int front1[MOD1+1],front2[MOD2+1];
int to1[300100],to2[300100];
int nxt1[300100],nxt2[300100];
int tot1,tot2;
void manacher()
{
memset(p,0,sizeof(p));
int pos=0,id=0,x;
for(int i=1;i<=len;i++)
{
if(i<pos) x=min(p[2*id-i],pos-i);
else x=1;
while(s[i+x]==s[i-x]) x++;
if(i+x>pos) { pos=i+x; id=i; }
p[i]=x;
}
}
int get_hash1(int l,int r)
{
int a=f1[r];
int b=1ll*f1[l-1]*g1[r-l+1]%MOD3;
return (b-a+MOD3)%MOD3;
}
int get_hash2(int l,int r)
{
int a=f2[r];
int b=1ll*f2[l-1]*g2[r-l+1]%MOD4;
return (b-a+MOD4)%MOD4;
}
void add1(int u,int v)
{
to1[++tot1]=v; nxt1[tot1]=front1[u]; front1[u]=tot1;
}
void add2(int u,int v)
{
to2[++tot2]=v; nxt2[tot2]=front2[u]; front2[u]=tot2;
}
bool find1(int u,int v)
{
for(int i=front1[u];i;i=nxt1[i])
if(to1[i]==v) return true;
return false;
}
bool find2(int u,int v)
{
for(int i=front2[u];i;i=nxt2[i])
if(to2[i]==v) return true;
return false;
}
void cal(int pos,int len)
{
for(int i=len;i>=1;i--)
{
int hash1=get_hash1(pos-i+1,pos+i-1);
int hash2=get_hash2(pos-i+1,pos+i-1);
int t1=hash1%MOD1,t2=hash2%MOD2;
if(!(find1(t1,hash1)&&find2(t2,hash2)))
{
ans++;
add1(t1,hash1);
add2(t2,hash2);
}
else return;
}
}
void pre()
{
ans=tot1=tot2=0;
memset(front1,0,sizeof(front1));
memset(front2,0,sizeof(front2));
memset(f1,0,sizeof(f1));
memset(f2,0,sizeof(f2));
g1[0]=1;
for(int i=1;i<=len;i++) g1[i]=1ll*g1[i-1]*D1%MOD3;
f1[0]=s[0];
for(int i=1;i<=len;i++) f1[i]=(1LL*f1[i-1]*D1+s[i]-'0')%MOD3;
g2[0]=1;
for(int i=1;i<=len;i++) g2[i]=1ll*g2[i-1]*D2%MOD4;
f2[0]=s[0];
for(int i=1;i<=len;i++) f2[i]=(1LL*f2[i-1]*D2+s[i]-'0')%MOD4;
}
int main()
{
int t;
scanf("%d",&t);
for(int tt=1;tt<=t;tt++)
{
scanf("%s",a);
s[len=0]='!';
l=strlen(a);
for(int i=0;i<l;i++)
{
s[++len]='#';
s[++len]=a[i];
}
s[++len]='#';
s[len+1]='&';
pre();
manacher();
for(int i=1;i<=len;i++)
cal(i,p[i]);
printf("Case #%d: %d\n",tt,ans/2);
}
}
首先对原串跑一遍manacher算法,处理出最长回文半径
然后枚举每一个位置
从最长的回文串开始一点一点儿往里索,hash判断这个字符串是否出现过
如果出现过,那么比它更短的肯定也出现过,结束本位置的查找,到下一个位置
代码是网上找来的。