性能测试分析

本文详细阐述了系统性能指标,如响应时间、HPS、TPS和QPS,并给出了各行业的标准。针对性能瓶颈,从硬件、中间件、应用程序和操作系统等层面进行了深入分析,并提供了调优步骤和注意事项。调优旨在提高系统吞吐量,缩短响应时间,支持更高并发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统性能指标(Response Time: RT)

参考标准:
不同行业不同业务可接受的响应时间是不同的

  1. 互联网企业:500毫秒以下,例如淘宝业务10毫秒左右。
  2. 金融企业:1秒以下为佳,部分复杂业务3秒以下。
  3. 保险企业:3秒以下为佳。
  4. 制造业:5秒以下为佳。
  5. 对于批量交易:时间窗口:即整个压测过程的时间,不同数据量则时间不一样,例如双11和99大促,数据量级不一样则时间窗口不同。大数据量的情况下,2小时内可完成压测。

系统处理能力

一般情况下,用以下指标来度量:

  1. HPS(Hits Per Second) :每秒点击次数,单位是次/秒。
  2. TPS(Transaction per Second):系统每秒处理交易数,单位是笔/秒。
  3. QPS(Query per Second):系统每秒处理查询次数,单位是次/秒对于互联网业务中,如果某些业务有且仅有一个请求连接,那么TPS=QPS=HPS,一般情况下用TPS来衡量整个业务流程,用QPS来衡量接口查询次数,用HPS来表示对服务器单击请求。

标准

无论TPS、QPS、HPS,此指标是衡量系统处理能力非常重要的指标,越大越好,根据经验,一般情况下:

  1. 金融行业:1000 TPS~50000 TPS,不包括互联网化的活动。
  2. 保险行业:100 TPS~100000 TPS,不包括互联网化的活动。
  3. 制造行业:10 TPS~5000 TPS。
  4. 互联网电子商务:10000 TPS~1000000 TPS。
  5. 互联网中型网站:1000 TPS~50000 TPS。
  6. 互联网小型网站:500 TPS~10000 TPS。

性能测试分析/调优

  1. 流程

    • 很多情况下压测流量并没有完全进入到后端(服务端),在网络接入层(云化的架构,例如:SLB/WAF/高防IP,甚至是CDN/全站加速等)可能就会出现由于各种规格(带宽、最大连接数、新建连接数等)限制或者因为压测的某些特征符合CC和DDoS的行为而触发了防护策略导致压测结果达不到预期
    • 接着看关键指标是否满足要求,如果不满足,需要确定是哪个地方有问题,一般情况下,服务器端问题可能性比较大,也有可能是客户端问题(这种情况非常小)
    • 对于服务器端问题,需要定位的是硬件相关指标,例如CPU,Memory,Disk I/O,Network I/O,如果是某个硬件指标有问题,需要深入的进行分析。
    • 如果硬件指标都没有问题,需要查看中间件相关指标,例如:线程池、连接池、GC等,如果是这些指标问题,需要深入的分析。
      如果中间件相关指标没问题,需要查看数据库相关指标,例如:慢查SQL、命中率、锁、参数设置

如果以上指标都正常,应用程序的算法、缓冲、缓存、同步或异步可能有问题,需要具体深入的分析。

在这里插入图片描述
2.可能瓶颈点

  1. 硬件、规格上的瓶颈 一般指的是CPU、内存、磁盘I/O方面的问题,分为服务器硬件瓶颈、网络瓶颈(对局域网可以不考虑)。

  2. 中间件上的性能瓶颈
    一般指的是应用服务器、web服务器等应用软件,还包括数据库系统。 例如:中间件weblogic平台上配置的JDBC连接池的参数设置不合理,造成的瓶颈

  3. 应用程序上的性能瓶颈 一般指的是开发人员开发出来的应用程序。
    例如,JVM参数不合理,容器配置不合理,慢SQL(可使用阿里云APM类产品如ARMS协助定位),数据库设计不合理,程序架构规划不合理,程序本身设计有问题(串行处理、请求的处理线程不够、无缓冲、无缓存、生产者和消费者不协调等),造成系统在大量用户访问时性能低下而造成的瓶颈。

  4. 操作系统上的性能瓶颈 一般指的是windows、UNIX、Linux等操作系统。
    例如,在进行性能测试,出现物理内存不足时,虚拟内存设置也不合理,虚拟内存的交换效率就会大大降低,从而导致行为的响应时间大大增加,这时认为操作系统上出现性能瓶颈。

  5. 网络设备上的性能瓶颈
    一般指的是防火墙、动态负载均衡器、交换机等设备。当前更多的云化服务架构使用的网络接入产品:包括但不限于SLB、WAF、高防IP、CDN、全站加速等等。
    例如,在动态负载均衡器上设置了动态分发负载的机制,当发现某个应用服务器上的硬件资源已经到达极限时,动态负载均衡器将后续的交易请求发送到其他负载较轻的应用服务器上。在测试时发现,动态负载均衡器没有起到相应的作用,这时可以认为网络瓶颈。

3.方法

CPU

  • CPU资源利用率很高的话,需要看CPU消耗User、Sys、Wait哪种状态。
  • 如果CPU User非常高,需要查看消耗在哪个进程,可以用top(linux)命令看出,接着用top –H –p看哪个线程消耗资源高。如果是Java应用,就可以用jstack看出此线程正在执行的堆栈,看资源消耗在哪个方法上,查看源代码就知道问题所在;如果是c++应用,可以用gprof性能工具进行分析。
  • 如果CPU Sys非常高,可以用strace(linux)看系统调用的资源消耗及时间。 如果CPUWait非常高,考虑磁盘读写了,可以通过减少日志输出、异步或换速度快的硬盘。

Memory

  • 操作系统为了最大化利用内存,一般都设置大量的cache,因此,内存利用率高达99%并不是问题,内存的问题主要看某个进程占用的内存是否非常大以及是否有大量的swap(虚拟内存交换)。

磁盘I/O

  • 磁盘I/O一个最显著的指标是繁忙率,可以通过减少日志输出、异步或换速度快的硬盘来降低繁忙率。

网络I/O

  • 网络I/O主要考虑传输内容大小,不能超过硬件网络传输的最大值70%,可以通过压缩减少内容大小、在本地设置缓存以及分多次传输等操作提高网络I/O性能。

内核参数

  • 内核参数一般都有默认值,这些内核参数默认值对于一般系统没问题,但是对于压力测试来说,可能运行的参数将会超过内核参数,导致系统出现问题,可以用sysctl来查看及修改。

JVM

  • JVM主要分析GC/FULL
    GC是否频繁,以及垃圾回收的时间,可以用jstat命令来查看,对于每个代大小以及GC频繁,通过jmap将内存转储,再借助工具HeapAnalyzer来分析哪地方占用的内存较高以及是否有内存泄漏可能。简单点可以使用APM工具,例如阿里云ARMS。

线程池

  • 如果线程不够用,可以通过参数调整,增加线程;对于线程池中的线程设置比较大的情况,还是不够用可能的原因是:某个线程被阻塞来不及释放,可能在等锁、方法耗时较长、数据库等待时间很长等原因导致,需要进一步分析才能定位。

JDBC连接池

  • 连接池不够用的情况下,可以通过参数进行调整增加;但是对于数据库本身处理很慢的情况下,调整没有多大的效果,需要查看数据库方面以及因代码导致连接未释放的原因。

SQL

  • SQL效率低下也是导致性能差的一个非常重要的原因,可以通过查看执行计划看SQL慢在哪里,一般情况,SQL效率低下原因主要有:

在这里插入图片描述在这里插入图片描述

调优

调优步骤
1.确定问题

  • 应用程序代码:在通常情况下,很多程序的性能问题都是写出来的,因此对于发现瓶颈的模块,应该首先检查一下代码。
  • 数据库配置:经常引起整个系统运行缓慢,一些诸如大型数据库都是需要DBA进行正确的参数调整才能投产的。
  • 操作系统配置:不合理就可能引起系统瓶颈。
  • 硬件设置:硬盘速度、内存大小等都是容易引起瓶颈的原因,因此这些都是分析的重点。
  • 网络:网络负载过重导致网络冲突和网络延迟。

2.分析问题

  • 当确定了问题之后,我们要明确这个问题影响的是响应时间吞吐量,还是其他问题?
  • 是多数用户还是少数用户遇到了问题?如果是少数用户,这几个用户与其它用户的操作有什么不同?
  • 系统资源监控的结果是否正常?CPU的使用是否到达极限?I/O情况如何?
  • 问题是否集中在某一类模块中?
  • 是客户端还是服务器出现问题? 系统硬件配置是否够用?
  • 实际负载是否超过了系统的负载能力? 是否未对系统进行优化?
  • 通过这些分析及一些与系统相关的问题,可以对系统瓶颈有更深入的了解,进而分析出真正的原因。

3.确定调整目标和解决方案

  • 高系统吞吐量,缩短响应时间,更好地支持并发。

4.测试解决方案

  • 对通过解决方案调优后的系统进行基准测试。(基准测试是指通过设计科学的测试方法、测试工具和测试系统,实现对一类测试对象的某项性能指标进行定量的和可对比的测试)。

5.分析调优结果

  • 系统调优是否达到或者超出了预定目标;系统是整体性能得到了改善,还是以系统某部分性能来解决其他问题;调优是否可以结束了。
    最后,如果达到了预期目标,调优工作可以先告一段落。

调优注意事项

  • 在应用系统的设计开发过程中,应始终把性能放在考虑的范围内,将性能测试常态化,日常化的内网的性能测试+定期的真实环境的业务性能测试,PTS都可以支持。
  • 确定清晰明确的性能目标是关键,进而将目标转化为PTS中的压测场景并设置好需要的目标量级,然后视情况选择并发、TPS模式,自动递增/手工调速的组合进行流量控制。
  • 必须保证调优后的程序运行正确。
  • 系统的性能更大程度上取决于良好的设计,调优技巧只是一个辅助手段。 调优过程是迭代渐进的过程,每一次调优的结果都要反馈到后续的代码开发中去。
  • 性能调优不能以牺牲代码的可读性和可维护性为代价。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值