学习转载
这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)
传统的训练函数,一个batch是这么训练的:
for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target)
# 2. backward
optimizer.zero_grad() # reset gradient
loss.backward()
optimizer.step()
- 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
- optimizer.zero_grad() 清空过往梯度;
- loss.backward() 反向传播,计算当前梯度;
- optimizer.step() 根据梯度更新网络参数
简单的说就是进来一个batch的数据,计算一次梯度,更新一次网络
使用梯度累加是这么写的:
for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target)
# 2.1 loss regularization
loss = loss/accumulation_steps
# 2.2 back propagation
loss.backward()
# 3. update parameters of net
if((i+1)%accumulation_steps)==0:
# optimizer the net
optimizer.step() # update parameters of net
optimizer.zero_grad() # reset gradient
- 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
- loss.backward() 反向传播,计算当前梯度;
- 多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
- 梯度累加了一定次数后,先optimizer.step() 根据累计的梯度更新网络参数,然后optimizer.zero_grad() 清空过往梯度,为下一波梯度累加做准备;
总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。
一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果accumulation_steps为8,则batchsize ‘变相’ 扩大了8倍,这是解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。
作者:Pascal
链接:https://www.zhihu.com/question/303070254/answer/573037166
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
本文深入探讨了梯度累加这一深度学习训练技巧,详细解释了其工作原理及实现方式,展示了如何通过梯度累加有效提升模型训练效率,尤其是在显存受限的情况下,能够实现等效于增大batch size的效果,同时指出在应用该技巧时需调整学习率。
4644

被折叠的 条评论
为什么被折叠?



