Zynq PCIE VCU代码分析

简介

本博客讲解了PCIE VCU demo数据传输过程,VCU部分单开一个部分分析

开始

PCIE架构

先看PCIE的框图,其实就是XDMA的封装拆开的形式,XDMA可以认为=PCI IP + DMA IP
在这里插入图片描述
然后可以看到DMA IP的axi lite接口使能了,然后连接到了一个pcie reg space ip上,同时还有一个AXI lite连接到了Zynq的AXI总线上,用于PS访问,也就是说HOST(PC)可以通过DMA访问该ip,Zynq PS也可以。
这个ip是数据传输的中转核心,下面来分析一下,直接上代码:


`timescale 1 ns / 1 ps

	module pcie_reg_space_v1_0_S00_AXI #
	(
		// Users to add parameters here

		// User parameters ends
		// Do not modify the parameters beyond this line
	// Width of S_AXI data bus
		parameter integer C_S_AXI_DATA_WIDTH	= 32,
		// Width of S_AXI address bus
		parameter integer C_S_AXI_ADDR_WIDTH	= 7
	)
	(
		// Users to add ports here
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg0_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg1_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg2_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg3_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg4_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg5_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg6_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg7_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg8_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg9_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg10_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg11_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg12_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg13_output ,
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg14_output ,

		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg15_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg16_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg17_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg18_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg19_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg20_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg21_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg22_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg23_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg24_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg25_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg26_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg27_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg28_input ,
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] slv_reg29_input ,
		
		output wire IRQ1_to_PS,
		output wire IRQ2_to_PS,
		output wire IRQ3_to_PS,
		output wire IRQ4_to_PS,
		
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR_clr,
	    input wire S_AXI_ARVALID_CLR,
		
		//output wire IRQ1_Host_Ack,
		//output wire IRQ2_Host_Ack,
		// User ports ends
		// Do not modify the ports beyond this line

		// Global Clock Signal
		input wire  S_AXI_ACLK,
		// Global Reset Signal. This Signal is Active LOW
		input wire  S_AXI_ARESETN,
		// Write address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
		// Write channel Protection type. This signal indicates the
    		// privilege and security level of the transaction, and whether
    		// the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_AWPROT,
		// Write address valid. This signal indicates that the master signaling
    		// valid write address and control information.
		input wire  S_AXI_AWVALID,
		// Write address ready. This signal indicates that the slave is ready
    		// to accept an address and associated control signals.
		output wire  S_AXI_AWREADY,
		// Write data (issued by master, acceped by Slave) 
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
		// Write strobes. This signal indicates which byte lanes hold
    		// valid data. There is one write strobe bit for each eight
    		// bits of the write data bus.    
		input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
		// Write valid. This signal indicates that valid write
    		// data and strobes are available.
		input wire  S_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    		// can accept the write data.
		output wire  S_AXI_WREADY,
		// Write response. This signal indicates the status
    		// of the write transaction.
		output wire [1 : 0] S_AXI_BRESP,
		// Write response valid. This signal indicates that the channel
    		// is signaling a valid write response.
		output wire  S_AXI_BVALID,
		// Response ready. This signal indicates that the master
    		// can accept a write response.
		input wire  S_AXI_BREADY,
		// Read address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
		// Protection type. This signal indicates the privilege
    		// and security level of the transaction, and whether the
    		// transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_ARPROT,
		// Read address valid. This signal indicates that the channel
    		// is signaling valid read address and control information.
		input wire  S_AXI_ARVALID,
		// Read address ready. This signal indicates that the slave is
    		// ready to accept an address and associated control signals.
		output wire  S_AXI_ARREADY,
		// Read data (issued by slave)
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
		// Read response. This signal indicates the status of the
    		// read transfer.
		output wire [1 : 0] S_AXI_RRESP,
		// Read valid. This signal indicates that the channel is
    		// signaling the required read data.
		output wire  S_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    		// accept the read data and response information.
		input wire  S_AXI_RREADY
	);

	// AXI4LITE signals
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awready;
	reg  	axi_wready;
	reg [1 : 0] 	axi_bresp;
	reg  	axi_bvalid;
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arready;
	reg [C_S_AXI_DATA_WIDTH-1 : 0] 	axi_rdata;
	reg [1 : 0] 	axi_rresp;
	reg  	axi_rvalid;

	// Example-specific design signals
	// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	// ADDR_LSB is used for addressing 32/64 bit registers/memories
	// ADDR_LSB = 2 for 32 bits (n downto 2)
	// ADDR_LSB = 3 for 64 bits (n downto 3)
	localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
	localparam integer OPT_MEM_ADDR_BITS = 4;
	//----------------------------------------------
	//-- Signals for user logic register space example
	//------------------------------------------------
	//-- Number of Slave Registers 31
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg0;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg1;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg2;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg3;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg4;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg5;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg6;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg7;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg8;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg9;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg10;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg11;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg12;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg13;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg14;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg15;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg16;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg17;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg18;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg19;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg20;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg21;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg22;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg23;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg24;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg25;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg26;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg27;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg28;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg29;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg30;
	wire	 slv_reg_rden;
	wire	 slv_reg_wren;
	reg [C_S_AXI_DATA_WIDTH-1:0]	 reg_data_out;
	integer	 byte_index;
	integer bit_index;
	reg	 aw_en;
	wire [C_S_AXI_DATA_WIDTH-1:0]	S_AXI_ARADDR_clear;
	
	wire S_AXI_ARVALID_CLEAR;

	// I/O Connections assignments
    assign S_AXI_ARADDR_clear = S_AXI_ARADDR_clr;
    assign S_AXI_ARVALID_CLEAR = S_AXI_ARVALID_CLR;
	

	// I/O Connections assignments

	assign S_AXI_AWREADY	= axi_awready;
	assign S_AXI_WREADY	= axi_wready;
	assign S_AXI_BRESP	= axi_bresp;
	assign S_AXI_BVALID	= axi_bvalid;
	assign S_AXI_ARREADY	= axi_arready;
	assign S_AXI_RDATA	= axi_rdata;
	assign S_AXI_RRESP	= axi_rresp;
	assign S_AXI_RVALID	= axi_rvalid;
	// Implement axi_awready generation
	// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	// de-asserted when reset is low.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awready <= 1'b0;
	      aw_en <= 1'b1;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // slave is ready to accept write address when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_awready <= 1'b1;
	          aw_en <= 1'b0;
	        end
	        else if (S_AXI_BREADY && axi_bvalid)
	            begin
	              aw_en <= 1'b1;
	              axi_awready <= 1'b0;
	            end
	      else           
	        begin
	          axi_awready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_awaddr latching
	// This process is used to latch the address when both 
	// S_AXI_AWVALID and S_AXI_WVALID are valid. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awaddr <= 0;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // Write Address latching 
	          axi_awaddr <= S_AXI_AWADDR;
	        end
	    end 
	end       

	// Implement axi_wready generation
	// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	// de-asserted when reset is low. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_wready <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
	        begin
	          // slave is ready to accept write data when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_wready <= 1'b1;
	        end
	      else
	        begin
	          axi_wready <= 1'b0;
	        end
	    end 
	end       

	// Implement memory mapped register select and write logic generation
	// The write data is accepted and written to memory mapped registers when
	// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
	// select byte enables of slave registers while writing.
	// These registers are cleared when reset (active low) is applied.
	// Slave register write enable is asserted when valid address and data are available
	// and the slave is ready to accept the write address and write data.
	assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      slv_reg0 <= 0;
	      slv_reg1 <= 0;
	      slv_reg2 <= 0;
	      slv_reg3 <= 0;
	      slv_reg4 <= 0;
	      slv_reg5 <= 0;
	      slv_reg6 <= 0;
	      slv_reg7 <= 0;
	      slv_reg8 <= 0;
	      slv_reg9 <= 0;
	      slv_reg10 <= 0;
	      slv_reg11 <= 0;
	      slv_reg12 <= 0;
	      slv_reg13 <= 0;
	      slv_reg14 <= 0;
	      slv_reg15 <= 0;
	      slv_reg16 <= 0;
	      slv_reg17 <= 0;
	      slv_reg18 <= 0;
	      slv_reg19 <= 0;
	      slv_reg20 <= 0;
	      slv_reg21 <= 0;
	      slv_reg22 <= 0;
	      slv_reg23 <= 0;
	      slv_reg24 <= 0;
	      slv_reg25 <= 0;
	      slv_reg26 <= 0;
	      slv_reg27 <= 0;
	      slv_reg28 <= 0;
	      slv_reg29 <= 0;
	      slv_reg30 <= 0;
	    end 
	  else begin
		  slv_reg15 <=  slv_reg15_input;  
	      slv_reg16 <=  slv_reg16_input;  
	      slv_reg17 <=  slv_reg17_input;  
	      slv_reg18 <=  slv_reg18_input;  
	      slv_reg19 <=  slv_reg19_input; 
		  slv_reg20 <=  slv_reg20_input;  
	      slv_reg21 <=  slv_reg21_input;  
	      slv_reg22 <=  slv_reg22_input;  
	      slv_reg23 <=  slv_reg23_input;  
	      slv_reg24 <=  slv_reg24_input; 
		  slv_reg25 <=  slv_reg25_input;  
	      slv_reg26 <=  slv_reg26_input;  
	      slv_reg27 <=  slv_reg27_input;  
	      slv_reg28 <=  slv_reg28_input;  
	      slv_reg29 <=  slv_reg29_input;
		//slv_reg30[15:0] <=  Interrupt_ack_input;

	  if (slv_reg_wren)
	      begin
	        case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	          5'h00:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 0
	                slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h01:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 1
	                slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h02:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 2
	                slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h03:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 3
	                slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h04:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 4
	                slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h05:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 5
	                slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h06:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 6
	                slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h07:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 7
	                slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h08:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 8
	                slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h09:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 9
	                slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h0A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 10
	                slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h0B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 11
	                slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h0C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 12
	                slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h0D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 13
	                slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          5'h0E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 14
	                slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          default : begin
	                      slv_reg0 <= slv_reg0;
	                      slv_reg1 <= slv_reg1;
	                      slv_reg2 <= slv_reg2;
	                      slv_reg3 <= slv_reg3;
	                      slv_reg4 <= slv_reg4;
	                      slv_reg5 <= slv_reg5;
	                      slv_reg6 <= slv_reg6;
	                      slv_reg7 <= slv_reg7;
	                      slv_reg8 <= slv_reg8;
	                      slv_reg9 <= slv_reg9;
	                      slv_reg10 <= slv_reg10;
	                      slv_reg11 <= slv_reg11;
	                      slv_reg12 <= slv_reg12;
	                      slv_reg13 <= slv_reg13;
	                      slv_reg14 <= slv_reg14;
	                      /* slv_reg15 <= slv_reg15;
	                      slv_reg16 <= slv_reg16;
	                      slv_reg17 <= slv_reg17;
	                      slv_reg18 <= slv_reg18;
	                      slv_reg19 <= slv_reg19;
	                      slv_reg20 <= slv_reg20;
	                      slv_reg21 <= slv_reg21;
	                      slv_reg22 <= slv_reg22;
	                      slv_reg23 <= slv_reg23;
	                      slv_reg24 <= slv_reg24;
	                      slv_reg25 <= slv_reg25;
	                      slv_reg26 <= slv_reg26;
	                      slv_reg27 <= slv_reg27;
	                      slv_reg28 <= slv_reg28;
	                      slv_reg29 <= slv_reg29;
	                      slv_reg30 <= slv_reg30; */
	                    end
	        endcase
	      end
	      
	    	 

	      //end
	      
	 // end
	//end  



/*  else if (axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]==5'h1E)
	        begin
              for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                       begin
                        slv_reg30[(byte_index*8) +: 8] <= 0;
                       end  
	        end*/
	        
	    				
			else if (S_AXI_ARADDR_clear[7:0] == 'h74 && S_AXI_ARVALID_CLEAR != 0)
	      begin
	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
                       //begin
                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
						slv_reg14[0] <= 1'b0;
						//slv_reg14[1] <= 1'b0;
						//IRQ1_Host_Ack_reg <= 1'b1;
             
                      end 
                      
                      
          else if (S_AXI_ARADDR_clear[7:0] == 'h70 && S_AXI_ARVALID_CLEAR != 0)
	      begin
	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
                       //begin
                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
						slv_reg13[0] <= 1'b0;
						//slv_reg14[1] <= 1'b0;
						//IRQ1_Host_Ack_reg <= 1'b1;
                       end 
                       
          else if (S_AXI_ARADDR_clear[7:0] == 'h6C && S_AXI_ARVALID_CLEAR != 0)
          begin
	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
                       //begin
                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
						slv_reg12[0] <= 1'b0;
						//slv_reg12[1] <= 1'b0;
						

						
						
						end
						
		  else if (S_AXI_ARADDR_clear[7:0] == 'h68 && S_AXI_ARVALID_CLEAR != 0)
	      begin
	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
                       //begin
                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
						slv_reg11[0] <= 1'b0;
						//slv_reg14[1] <= 1'b0;
						//IRQ1_Host_Ack_reg <= 1'b1;
                       end 
			
	
	    			
						
						
			    
	        
//	   else  if (slv_reg26[1] !=0 && slv_reg26[0] !=0 && slv_reg12[1] !=0 && slv_reg12[0])
//	      begin
//	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
//                       //begin
//                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
//						slv_reg12[1] <= 1'b0;
//						slv_reg12[0] <= 1'b0;
//						//Intr_Ack_1 <= '1';
//                       end 
                       
//        else  if (slv_reg28[1] !=0 && slv_reg28[0] !=0 && slv_reg14[1] !=0 && slv_reg14[0])
//	      begin
//	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
//                       //begin
//                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
//						slv_reg14[1] <= 1'b0;
//						slv_reg14[0] <= 1'b0;
//						//Intr_Ack_1 <= '1';
//                       end 			
			
	
//	   else  if (slv_reg28[0] !=0)
//	      begin
//	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
//                       //begin
//                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
//						slv_reg14[0] <= 1'b0;
//						//Intr_Ack_1 <= '1';
//                       end 



//        else  if (slv_reg26[0] !=0)
//	        begin
//	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
//                       //begin
//                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
//						slv_reg12[0] <= 1'b0;
//						//Intr_Ack_2 <= '1';
//            end 
            
//         else  if (slv_reg28[1] !=0)
//	      begin
//	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
//                       //begin
//                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
//						slv_reg14[1] <= 1'b0;
//						//Intr_Ack_1 <= '1';
//                       end 



//        else  if (slv_reg26[1] !=0)
//	        begin
//	                   // for ( bit_index = 0; bit_index <= 31; bit_index = bit_index+1 )
//                       //begin
//                        //slv_reg14[(bit_index) +: 1] <=  ~ ( slv_reg30[bit_index +: 1]) && slv_reg14[(bit_index) +: 1];
//						slv_reg12[1] <= 1'b0;
//						//Intr_Ack_2 <= '1';
//            end 


         
   end
  			 
end
	// Implement write response logic generation
	// The write response and response valid signals are asserted by the slave 
	// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	// This marks the acceptance of address and indicates the status of 
	// write transaction.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_bvalid  <= 0;
	      axi_bresp   <= 2'b0;
	    end 
	  else
	    begin    
	      if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
	        begin
	          // indicates a valid write response is available
	          axi_bvalid <= 1'b1;
	          axi_bresp  <= 2'b0; // 'OKAY' response 
	        end                   // work error responses in future
	      else
	        begin
	          if (S_AXI_BREADY && axi_bvalid) 
	            //check if bready is asserted while bvalid is high) 
	            //(there is a possibility that bready is always asserted high)   
	            begin
	              axi_bvalid <= 1'b0; 
	            end  
	        end
	    end
	end   

	// Implement axi_arready generation
	// axi_arready is asserted for one S_AXI_ACLK clock cycle when
	// S_AXI_ARVALID is asserted. axi_awready is 
	// de-asserted when reset (active low) is asserted. 
	// The read address is also latched when S_AXI_ARVALID is 
	// asserted. axi_araddr is reset to zero on reset assertion.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_arready <= 1'b0;
	      axi_araddr  <= 32'b0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID)
	        begin
	          // indicates that the slave has acceped the valid read address
	          axi_arready <= 1'b1;
	          // Read address latching
	          axi_araddr  <= S_AXI_ARADDR;
	        end
	      else
	        begin
	          axi_arready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_arvalid generation
	// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	// S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	// data are available on the axi_rdata bus at this instance. The 
	// assertion of axi_rvalid marks the validity of read data on the 
	// bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	// is deasserted on reset (active low). axi_rresp and axi_rdata are 
	// cleared to zero on reset (active low).  
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rvalid <= 0;
	      axi_rresp  <= 0;
	    end 
	  else
	    begin    
	      if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
	        begin
	          // Valid read data is available at the read data bus
	          axi_rvalid <= 1'b1;
	          axi_rresp  <= 2'b0; // 'OKAY' response
	        end   
	      else if (axi_rvalid && S_AXI_RREADY)
	        begin
	          // Read data is accepted by the master
	          axi_rvalid <= 1'b0;
	        end                
	    end
	end    

	// Implement memory mapped register select and read logic generation
	// Slave register read enable is asserted when valid address is available
	// and the slave is ready to accept the read address.
	assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
	always @(*)
	begin
	      // Address decoding for reading registers
	      case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	        5'h00   : reg_data_out <= slv_reg0;
	        5'h01   : reg_data_out <= slv_reg1;
	        5'h02   : reg_data_out <= slv_reg2;
	        5'h03   : reg_data_out <= slv_reg3;
	        5'h04   : reg_data_out <= slv_reg4;
	        5'h05   : reg_data_out <= slv_reg5;
	        5'h06   : reg_data_out <= slv_reg6;
	        5'h07   : reg_data_out <= slv_reg7;
	        5'h08   : reg_data_out <= slv_reg8;
	        5'h09   : reg_data_out <= slv_reg9;
	        5'h0A   : reg_data_out <= slv_reg10;
	        5'h0B   : reg_data_out <= slv_reg11;
	        5'h0C   : reg_data_out <= slv_reg12;
	        5'h0D   : reg_data_out <= slv_reg13;
	        5'h0E   : reg_data_out <= slv_reg14;
	        5'h0F   : reg_data_out <= slv_reg15;
	        5'h10   : reg_data_out <= slv_reg16;
	        5'h11   : reg_data_out <= slv_reg17;
	        5'h12   : reg_data_out <= slv_reg18;
	        5'h13   : reg_data_out <= slv_reg19;
	        5'h14   : reg_data_out <= slv_reg20;
	        5'h15   : reg_data_out <= slv_reg21;
	        5'h16   : reg_data_out <= slv_reg22;
	        5'h17   : reg_data_out <= slv_reg23;
	        5'h18   : reg_data_out <= slv_reg24;
	        5'h19   : reg_data_out <= slv_reg25;
	        5'h1A   : reg_data_out <= slv_reg26;
	        5'h1B   : reg_data_out <= slv_reg27;
	        5'h1C   : reg_data_out <= slv_reg28;
	        5'h1D   : reg_data_out <= slv_reg29;
	        5'h1E   : reg_data_out <= slv_reg30;
	        default : reg_data_out <= 0;
	      endcase
	end

	// Output register or memory read data
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rdata  <= 0;
	    end 
	  else
	    begin    
	      // When there is a valid read address (S_AXI_ARVALID) with 
	      // acceptance of read address by the slave (axi_arready), 
	      // output the read dada 
	      if (slv_reg_rden)
	        begin
	          axi_rdata <= reg_data_out;     // register read data
	        end   
	    end
	end    

	// Add user logic here
		assign slv_reg0_output = slv_reg0;
		assign slv_reg1_output = slv_reg1; 
		assign slv_reg2_output = slv_reg2; 
		assign slv_reg3_output = slv_reg3; 
		assign slv_reg4_output = slv_reg4;
		assign slv_reg5_output = slv_reg5;
		assign slv_reg6_output = slv_reg6; 
		assign slv_reg7_output = slv_reg7; 
		assign slv_reg8_output = slv_reg8; 
		assign slv_reg9_output = slv_reg9;
		assign slv_reg10_output = slv_reg10;
		assign slv_reg11_output = slv_reg11; 
		assign slv_reg12_output = slv_reg12; 
		assign slv_reg13_output = slv_reg13;
        assign slv_reg14_output = slv_reg14;		
        assign IRQ1_to_PS = slv_reg11[0];
		assign IRQ2_to_PS = slv_reg12[0];
		assign IRQ3_to_PS = slv_reg13[0];
		assign IRQ4_to_PS = slv_reg14[0];
	// U
	// User logic ends

	endmodule

可以,看出HOST通过DMA修改的直接连接到了第二个AXI LIte总线上,就是说为了HOST和PS用于数据交互,然后也会引起中断。

代码分析

PS linux驱动 PCIE_REG_SPACE

/**
 * pciep_platform_driver_probe() -  Probe call for the device.
 * @pdev:	handle to the platform device structure.
 * Return:      Success(=0) or error status(<0).
 *
 * It does all the memory allocation and registration for the device.
 */
static int pciep_platform_driver_probe(struct platform_device *pdev)
{
	int retval = 0;
	u32 minor_number = 0;
	struct pciep_driver_data *driver_data;
	struct device_node *node = pdev->dev.of_node;
	struct resource *res;
	int status;
	int ret;
	u32 size=4096;
	char channel[5];

	/* create (pciep_driver_data*)this. */
	driver_data = pciep_driver_create(DRIVER_NAME, &pdev->dev, minor_number,
					  size, channel);
	if (IS_ERR_OR_NULL(driver_data)) {
		dev_err(&pdev->dev, "driver create fail.\n");
		retval = PTR_ERR(driver_data);
		goto failed;
	}

	//IO REMAP, PCIE REG SPACE Read write
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	driver_data->regs= devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR_OR_NULL(driver_data->regs))
		return PTR_ERR(driver_data->regs);

	//HOST-TO-PS read irq
	driver_data->rd_irq = irq_of_parse_and_map(node, 0);
	if (driver_data->rd_irq < 0) {
		pr_err("Unable to get IRQ for pcie");
		return driver_data->rd_irq;
	}

	ret = devm_request_irq(&pdev->dev, driver_data->rd_irq,
			       xilinx_pciep_read_irq_handler, IRQF_SHARED,
			       "xilinx_pciep_read", driver_data);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to register IRQ\n");
		goto failed;
	}

	//HOST-TO-PS write irq
	driver_data->wr_irq = irq_of_parse_and_map(node, 1);
	if (driver_data->wr_irq < 0) {
		pr_err("Unable to get IRQ1 for pcie");
		return driver_data->wr_irq;
	}

	ret = devm_request_irq(&pdev->dev, driver_data->wr_irq,
			       xilinx_pciep_write_irq_handler, IRQF_SHARED,
			       "xilinx_pciep_write", driver_data);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to register IRQ\n");
		goto failed;
	}

	//HOST-TO-PS host done irq
	driver_data->host_done_irq = irq_of_parse_and_map(node, 2);
	if (driver_data->host_done_irq < 0) {
		pr_err("Unable to get IRQ1 for pcie");
		return driver_data->host_done_irq;
	}

	ret = devm_request_irq(&pdev->dev, driver_data->host_done_irq,
			       xilinx_pciep_host_done_irq_handler, IRQF_SHARED,
			       "xilinx_host_done", driver_data);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to register IRQ\n");
		goto failed;
	}


	dev_set_drvdata(&pdev->dev, driver_data);
	dev_info(&pdev->dev, "pcie driver probe success.\n");
	return 0;

failed:
	dev_info(&pdev->dev, "driver install failed.\n");
	return retval;
}

上面主要是把AXI lite进行了io map,用于寄存器访问。

/**
 * xilinx_pciep_write_irq_handler - Interrupt handler
 * @irq: IRQ number
 * @data: Pointer to the driver data structure
 *
 * Return: IRQ_HANDLED/IRQ_NONE
 */
static irqreturn_t xilinx_pciep_write_irq_handler(int irq, void *data)
{
	u32 value;
	struct pciep_driver_data *driver_data = data;

	value = reg_read(driver_data, PCIEP_WRITE_BUFFER_READY);
	value &= ~SET_BUFFER_RDY;
	reg_write(driver_data, PCIEP_WRITE_BUFFER_READY, value);

	complete(&driver_data->write_complete);
	reg_read(driver_data, PCIRC_WRITE_BUFFER_TRANSFER_DONE_INTR);

	return IRQ_HANDLED;
}

上面是其中一个写驱动,可以发现,主要是读取状态,然后发送写数据完成量,告知驱动写数据完成

static ssize_t pciep_driver_file_write(struct file *file,
				       const char __user *buff,
				       size_t count, loff_t *ppos)
{
	struct pciep_driver_data *this = file->private_data;
	int ret;
	u32 value;

	/* check the size */
	if (count <= 0)
		return -EINVAL;

	/* dma buffer allocation */
	this->write_virt_addr = dma_alloc_coherent(this->dma_dev, count,
					     &(this->write_phys_addr), GFP_KERNEL);
	if (IS_ERR_OR_NULL(this->write_virt_addr)) {
		dev_err(this->dma_dev, "%s dma_alloc_coherent() failed\n",
			__func__);
		this->write_virt_addr = NULL;
		return -ENOMEM;
	}

	ret = copy_from_user(this->write_virt_addr, buff, count);
	if (ret)
		goto out;

	reg_write(this, PCIEP_WRITE_BUFFER_ADDR, this->write_phys_addr);
	reg_write(this, PCIEP_WRITE_BUFFER_SIZE, count);
	value = reg_read(this, PCIEP_WRITE_BUFFER_READY);
	value |= SET_BUFFER_RDY;
	reg_write(this, PCIEP_WRITE_BUFFER_READY, value);

	/* wait for done event */
	wait_for_completion(&this->write_complete);
out:
	/* free the allocated memory */
	dma_free_coherent(this->dma_dev, count,
                 this->write_virt_addr, this->write_phys_addr);

	return ret;
}

上面可以看出,首先申请了一个dma一致内存,然后把物理地址写在pcie reg space寄存器中,然后开启写ready,等待写完成。这里为啥直接等了呢?因为主机端一直在轮训这个寄存器,后面会说到这个寄存器。

PS PCI (nwl, north briget logic)Driver

主要是初始化AXI_PCI寄存器,配置桥、Ingress、以及检测link status,后续加入

XDMA主机驱动

static const struct pci_device_id pci_ids[] = {
	{ PCI_DEVICE(0x10ee, 0xa884), },
	{ PCI_DEVICE(0x10ee, 0xa883), },
	{ PCI_DEVICE(0x10ee, 0x903f), },
	{ PCI_DEVICE(0x10ee, 0x9038), },
	{ PCI_DEVICE(0x10ee, 0x9028), },
	{ PCI_DEVICE(0x10ee, 0x9018), },
	{ PCI_DEVICE(0x10ee, 0x9034), },
	{ PCI_DEVICE(0x10ee, 0x9024), },
	{ PCI_DEVICE(0x10ee, 0x9014), },
	{ PCI_DEVICE(0x10ee, 0x9032), },
	{ PCI_DEVICE(0x10ee, 0x9022), },
	{ PCI_DEVICE(0x10ee, 0x9012), },
	{ PCI_DEVICE(0x10ee, 0x9031), },
	{ PCI_DEVICE(0x10ee, 0x9021), },
	{ PCI_DEVICE(0x10ee, 0x9011), },

	{ PCI_DEVICE(0x10ee, 0x8011), },
	{ PCI_DEVICE(0x10ee, 0x8012), },
	{ PCI_DEVICE(0x10ee, 0x8014), },
	{ PCI_DEVICE(0x10ee, 0x8018), },
	{ PCI_DEVICE(0x10ee, 0x8021), },
	{ PCI_DEVICE(0x10ee, 0x8022), },
	{ PCI_DEVICE(0x10ee, 0x8024), },
	{ PCI_DEVICE(0x10ee, 0x8028), },
	{ PCI_DEVICE(0x10ee, 0x8031), },
	{ PCI_DEVICE(0x10ee, 0x8032), },
	{ PCI_DEVICE(0x10ee, 0x8034), },
	{ PCI_DEVICE(0x10ee, 0x8038), },

	{ PCI_DEVICE(0x10ee, 0x7011), },
	{ PCI_DEVICE(0x10ee, 0x7012), },
	{ PCI_DEVICE(0x10ee, 0x7014), },
	{ PCI_DEVICE(0x10ee, 0x7018), },
	{ PCI_DEVICE(0x10ee, 0x7021), },
	{ PCI_DEVICE(0x10ee, 0x7022), },
	{ PCI_DEVICE(0x10ee, 0x7024), },
	{ PCI_DEVICE(0x10ee, 0x7028), },
	{ PCI_DEVICE(0x10ee, 0x7031), },
	{ PCI_DEVICE(0x10ee, 0x7032), },
	{ PCI_DEVICE(0x10ee, 0x7034), },
	{ PCI_DEVICE(0x10ee, 0x7038), },

	{ PCI_DEVICE(0x10ee, 0x6828), },
	{ PCI_DEVICE(0x10ee, 0x6830), },
	{ PCI_DEVICE(0x10ee, 0x6928), },
	{ PCI_DEVICE(0x10ee, 0x6930), },
	{ PCI_DEVICE(0x10ee, 0x6A28), },
	{ PCI_DEVICE(0x10ee, 0x6A30), },
	{ PCI_DEVICE(0x10ee, 0x6D30), },

	{ PCI_DEVICE(0x10ee, 0x4808), },
	{ PCI_DEVICE(0x10ee, 0x4828), },
	{ PCI_DEVICE(0x10ee, 0x4908), },
	{ PCI_DEVICE(0x10ee, 0x4A28), },
	{ PCI_DEVICE(0x10ee, 0x4B28), },

	{ PCI_DEVICE(0x10ee, 0x2808), },

#ifdef INTERNAL_TESTING
	{ PCI_DEVICE(0x1d0f, 0x1042), 0},
#endif
	{0,}
};
MODULE_DEVICE_TABLE(pci, pci_ids);

static struct pci_driver pci_driver = {
	.name = DRV_MODULE_NAME,
	.id_table = pci_ids,
	.probe = probe_one,
	.remove = remove_one,
	.err_handler = &xdma_err_handler,
};

上述,匹配PCI办卡,然后初始化设备

Host app

void *pcie_dma_read(void *vargp)
{
	struct timespec ts_start;
	int rc, i;
	int count = COUNT_DEFAULT;
	volatile unsigned int addr, size, buffer_ready, read_complete;
	volatile unsigned long int offset;
	volatile unsigned int lsb_offset, msb_offset;
	volatile unsigned int *transfer_done;
	char *read_allocated = NULL;

	printf("Running use case\n");
	while (1) {

		transfer_done = ((uint32_t *)(trans.map_base + PCIRC_READ_BUFFER_TRANSFER_DONE));
		buffer_ready = *((uint32_t *)(trans.map_base + PCIEP_READ_BUFFER_READY));
		read_complete = *((uint32_t *)(trans.map_base + PCIEP_READ_TRANSFER_COMPLETE));

		while (!(buffer_ready & 0x1))
		{
			//循环读pcie reg space reg, ready其实就是card那边打开了pcie设备,然后申请了dma buffer
			buffer_ready = *((uint32_t *)(trans.map_base + PCIEP_READ_BUFFER_READY));
			read_complete = *((uint32_t *)(trans.map_base + PCIEP_READ_TRANSFER_COMPLETE));
			if (read_complete == 0xef)
				break;
		}

		if (read_complete == 0xef)
			break;
		//独处物理地址,以及大小
		addr = *((uint32_t *)(trans.map_base + PCIEP_READ_BUFFER_ADDR));
		size = *((uint32_t *) (trans.map_base + PCIEP_READ_BUFFER_SIZE));
		lsb_offset = *((uint32_t *) (trans.map_base + PCIEP_READ_BUFFER_OFFSET));
		msb_offset = *((uint32_t *) (trans.map_base + PCIEP_READ_BUFFER_READY));

		offset = lsb_offset | ((unsigned long int)(msb_offset & 0xFFFF0000) << 16);

		posix_memalign((void **)&read_allocated, 4096 /*alignment */ , size + 4096);
		if (!read_allocated) {
			fprintf(stderr, "OOM %u.\n", size + 4096);
			rc = -ENOMEM;
			goto read_out;
		}

		trans.read_buffer = read_allocated;
		if (verbose)
			fprintf(stdout, "host buffer 0x%x = %p\n",
								size + 4096, trans.read_buffer);

		printf("#");
		fflush(stdout);
		if (trans.infile_fd > 0) {
			rc = read_to_buffer(trans.infname, trans.infile_fd, trans.read_buffer, size, offset);

			if (rc < 0) {
				printf("read to buffer failed size %d rc %d", size, rc);
				goto out;
			}
		}

		for (i = 0; i < count; i++) {
		/* write buffer to AXI MM address using SGDMA */
			rc = clock_gettime(CLOCK_MONOTONIC, &ts_start);
			//写DMA,注意由于fpga bar地址到axi ddr是直接对应的,所以一定需要和ps端匹配好
			rc = write_from_buffer(H2C_DEVICE, trans.h2c_fd, trans.read_buffer, size, addr);
			if (rc < 0) {
				printf("write from buffer failed size %d rc %d", size, rc);
				goto out;
			}

			*transfer_done = 0x1;
			while ((buffer_ready & 0x1)) {
				buffer_ready = *((uint32_t *)(trans.map_base + PCIEP_READ_BUFFER_READY));
			}
		}

		if (read_allocated) {
			free(read_allocated);
			read_allocated = NULL;
		}
	}

out:
	printf("\n** Read done\n");
read_out:
	if (read_allocated) {
		free(read_allocated);
		read_allocated = NULL;
	}
	return NULL;
}

END

问题,缺少PCIE到主机msi中断,主机通过轮训方式读取数据,效率低,后续改进

### Zynq PCIe时钟配置教程 对于Zynq设备中的PCIe接口,其时钟配置至关重要。Xilinx官方文档指出,在设计过程中应确保PCIe根端口(Root Port, RP)和末端端口(Endpoint, EP)之间的时钟同步[^1]。 #### 配置步骤概述 - **外部参考时钟源的选择** 外部参考时钟通常由FPGA提供给PCIe桥接器。该时钟频率一般设定为100 MHz或更高,具体取决于所使用的标准版本和支持的最大数据速率。为了稳定性和兼容性的考虑,建议采用低抖动、高精度的晶体振荡器作为时钟源[^2]。 - **内部PLL设置** 使用片内锁相环(Phase-Locked Loop, PLL)来生成所需的差分时钟信号。这些信号用于驱动收发器模块以及维持链路训练(Link Training and Status State Machine, LTSSM)状态机正常工作所需的各种定时参数。PLL配置可以通过Vivado工具自动完成,也可以手动调整以满足特定应用需求[^3]。 ```verilog // Verilog代码片段展示如何实例化并连接MMCM/PLL IP核 module pcie_clock_gen ( input wire refclk_p, input wire refclk_n, output reg clk_out1, ... ); // 实例化Xilinx MMCM/PLL IP Core MMCME2_ADV #( .CLKIN1_PERIOD(10.0), // 输入时钟周期(ns) .DIVCLK_DIVIDE(1), .CLKFBOUT_MULT_F(8.000), // 反馈乘法因子 .CLKOUT0_DIVIDE_F(8.000) // 输出除法因子 ) mmcm_inst ( .CLKIN1(refclk_p), .CLKFBIN(fb_clk), .RST(reset_synced), .CLKOUT0(clk_out1), ... ); endmodule ``` #### 常见问题解答 当遇到与Zynq PCIe相关的时钟配置难题时,下面列举了一些可能碰到的情况及其解决办法: - 如果发现LTSSM无法进入L0s/L1状态,则需检查是否存在足够的去耦电容靠近电源引脚,并确认所有必要的控制信号均已正确拉高或接地。 - 对于因时序违例而导致的功能异常情况,尝试降低系统操作速度直到找到最接近实际性能极限的工作点;另外还可以优化布局布线策略减少寄生效应带来的影响。 - 当面对不同板卡间互操作性挑战时,请务必遵循最新的PCle规范指南来进行硬件选型及固件开发,同时注意排查任何潜在的地平面分割问题以免引起噪声干扰。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值