1017 Queueing at Bank (25 分)

本文介绍了一个银行服务系统的模拟算法,该算法通过计算不同窗口的结束服务时间来预测客户的平均等待时间。考虑到银行的营业时间限制,任何在17点之后到达的客户将不被服务。通过对客户到达时间和处理时间的输入进行排序,算法有效地分配了服务窗口,并计算了所有客户的平均等待时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Suppose a bank has K windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. All the customers have to wait in line behind the yellow line, until it is his/her turn to be served and there is a window available. It is assumed that no window can be occupied by a single customer for more than 1 hour.

Now given the arriving time T and the processing time P of each customer, you are supposed to tell the average waiting time of all the customers.

Input Specification:
Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤10
​4
​​ ) - the total number of customers, and K (≤100) - the number of windows. Then N lines follow, each contains 2 times: HH:MM:SS - the arriving time, and P - the processing time in minutes of a customer. Here HH is in the range [00, 23], MM and SS are both in [00, 59]. It is assumed that no two customers arrives at the same time.

Notice that the bank opens from 08:00 to 17:00. Anyone arrives early will have to wait in line till 08:00, and anyone comes too late (at or after 17:00:01) will not be served nor counted into the average.

Output Specification:
For each test case, print in one line the average waiting time of all the customers, in minutes and accurate up to 1 decimal place.

Sample Input:
7 3
07:55:00 16
17:00:01 2
07:59:59 15
08:01:00 60
08:00:00 30
08:00:02 2
08:03:00 10
Sample Output:
8.2

相比于1014,这道题似乎要简单一点,相当于是黄线里面只有一排。
注意:只要顾客在17点前到达,那么一定会被服务。
最后一个测试点中的LastFinishTime 可能会大于24点,所以在找最小的窗口时应该将MinTime初始化更大。
或者直接用LastFinishTime[0]为初值,同时从1开始循环,找最小的时间。
在这里插入图片描述

#include <iostream>
#include <vector>
#include<algorithm>

using namespace std;
struct CustomerData{
	int ArriveTime;
	int ProcessTime;
	int WaitingTime = 0;
};

bool cmp(CustomerData A, CustomerData B)
{
	return A.ArriveTime < B.ArriveTime;
}

int main(void)
{
	freopen("input2.txt", "r", stdin);
	int CustomerNum, WindowNum;
	int Hour, Minute, Second, Time;
	cin >> CustomerNum >> WindowNum;
	vector<int> LastFinishTime(WindowNum,28800);	//存储每一个当前窗口结束的时间
	CustomerData TempCust;							//用以帮助入最小堆
	vector<CustomerData>Customers;
	for (int i = 0; i < CustomerNum; ++i) {
		scanf("%d:%d:%d %d", &Hour, &Minute, &Second, &Time);
		TempCust.ArriveTime = Hour * 60 * 60 + Minute * 60 + Second;
		TempCust.ProcessTime = Time * 60;
		if (TempCust.ArriveTime <= 17 * 60 * 60)			//剔除下午5点以后开始排队的顾客
			Customers.push_back(TempCust);
	}
	sort(Customers.begin(), Customers.end(), cmp);
	int CountWindowNum = 0,TotalWaitTime = 0,MinTime;
	for (unsigned int i = 0; i < Customers.size(); ++i) {
		MinTime = 100000;		//若此处MinTime初始化为86400,即24点,则最后测试点过不去,改成更大的就可以过去了
		CountWindowNum = 0;
		for (int j = 0; j < WindowNum; ++j) {
			if (MinTime > LastFinishTime[j]) {
				MinTime = LastFinishTime[j];
				CountWindowNum = j;
			}
		}
		if (Customers[i].ArriveTime > LastFinishTime[CountWindowNum]) {
			Customers[i].WaitingTime = 0;
			LastFinishTime[CountWindowNum] = Customers[i].ArriveTime + Customers[i].ProcessTime;
		}
		else {
			Customers[i].WaitingTime = LastFinishTime[CountWindowNum] - Customers[i].ArriveTime;
			LastFinishTime[CountWindowNum] += Customers[i].ProcessTime;
		}
		/*若在17点前到达的顾客等到17点还没有没服务就直接离开,那么可以加上以下两行*/
	//	if (LastFinishTime[CountWindowNum] > 17 * 60 * 60)
	//		LastFinishTime[CountWindowNum] = 17 * 60 * 60;
		TotalWaitTime += Customers[i].WaitingTime;		
	}
	if (!Customers.size()) printf("0.0\n");
	else printf("%.1lf", 1.0 * TotalWaitTime / 60 / Customers.size());
	fclose(stdin);
	system("pause");
	return 0;
}
内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值