Blending
下面我们来详细讨论下这个Blending集成学习方式:
(1) 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);
(2) 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;
(3) 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;
(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;
(5) 使用第二层训练好的模型对第二层测试集test_predict1进行预测,该结果为整个测试集的结果。
在这里,笔者先来梳理下这个过程:
在(1)步中,总的数据集被分成训练集和测试集,如80%训练集和20%测试集,然后在这80%的训练集中再拆分训练集70%和验证集30%,因此拆分后的数据集由三部分组成:训练集80%* 70% 、测试集20%、验证集80%* 30% 。训练集是为了训练模型,测试集是为了调整模型(调参),测试集则是为了检验模型的优度。
在(2)-(3)步中,我们使用训练集创建了K个模型,如SVM、random forests、XGBoost等,这个是第一层的模型。 训练好模型后将验证集输入模型进行预测,得到K组不同的输出,我们记作
A
1
,
.
.
.
,
A
K
,然后将测试集输入K个模型也得到K组输出,我们记作
B
1
,
.
.
.
,
B
K
,其中
A
i
的样本数与验证集一致,
B
i
的样本数与测试集一致。如果总的样本数有10000个样本,那么使用5600个样本训练了K个模型,输入验证集2400个样本得到K组2400个样本的结果
A
1
,
.
.
.
,
A
K
,输入测试集2000个得到K组2000个样本的结果
B
1
,
.
.
.
,
B
K
。
在(4)步中,我们使用K组2400个样本的验证集结果
A
1
,
.
.
.
,
A
K
作为第二层分类器的特征,验证集的2400个标签为因变量,训练第二层分类器,得到2400个样本的输出。
在(5)步中,将输入测试集2000个得到K组2000个样本的结果
B
1
,
.
.
.
,
B
K
放入第二层分类器,得到2000个测试集的预测结果。
以上是Blending集成方式的过程,接下来我们来分析这个集成方式的优劣:
其中一个最重要的优点就是实现简单粗暴,没有太多的理论的分析。但是这个方法的缺点也是显然的:blending只使用了一部分数据集作为留出集进行验证,也就是只能用上数据中的一部分,实际上这对数据来说是很奢侈浪费的。
关于这个缺点,我们以后再做改进,我们先来用一些案例来使用这个集成方式。