Partitioning Game

本文介绍了一款涉及策略和博弈的游戏,通过分析游戏规则,使用SG函数来预测Alice和Bob在最优策略下游戏的胜者。输入包含多个测试案例,每个案例由一堆细胞构成的堆开始,玩家轮流将堆分成两个不等的堆,无法操作者输。文章提供了C++代码实现,用于计算SG函数并确定胜者。

题目

Alice and Bob are playing a strange game. The rules of the game are:

1.      Initially there are n piles.

2.      A pile is formed by some cells.

3.      Alice starts the game and they alternate turns.

4.      In each tern a player can pick any pile and divide it into two unequal piles.

5.      If a player cannot do so, he/she loses the game.

Now you are given the number of cells in each of the piles, you have to find the winner of the game if both of them play optimally.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 100). The next line contains n integers, where the ith integer denotes the number of cells in the ith pile. You can assume that the number of cells in each pile is between 1 and 10000.

Output

For each case, print the case number and 'Alice' or 'Bob' depending on the winner of the game.

样例

Sample Input

3

1

4

3

1 2 3

1

7

Sample Output

Case 1: Bob

Case 2: Alice

Case 3: Bob

算一个sg函数就好了!

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <string.h>
#include <string>
typedef long long ll;
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = 10005;
int sg[maxn];
int mex[maxn];
void getsg(){
	for (int i = 1; i <= maxn; i++){
		memset(mex, false, sizeof(mex));
		for (int j = 1; j * 2 < i; j++){
			if (i != j * 2) mex[sg[j] ^ sg[i - j]] = 1;
		}
		for (int j = 0; j < maxn; j++){
			if (!mex[j]){
				sg[i] = j;
				break;
			}
		}
	}
	return;
}
int main() {
	int T, cnt = 0;
	getsg();
	cin >> T;
	while (T--) {
		int n, ans = 0;
		cin >> n;
		for (int i = 0; i < n; i++) {
			int m;
			cin >> m;
			ans ^= sg[m];
		}
		cout << "Case " << ++cnt << ": ";
		if (ans) cout << "Alice" << endl;
		else cout << "Bob" << endl;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值