Common Subsequence (最长公共子序列)

本文深入探讨了最长公共子序列(LCS)问题,详细解释了如何通过动态规划算法解决这一经典问题,包括理解子序列的概念、算法的实现过程以及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence (最长公共子序列)

问题描述:
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, …, xm> another sequence Z = <z1, z2, …, zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, …, ik> of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
(给定序列的子序列是给定的序列,其中省略了一些元素(可能没有)。给定一个序列X = , xm>另一个序列Z = , zk>是X的子序列,如果存在严格递增的序列, ik> (index of X)使得对于所有j = 1,2,…,k, xij = zj。例如,Z = 是X = 的子序列,索引序列< 1,2,4,6 >。给定两个序列X和Y,问题是求出X和Y的最大公共子序列的长度。
程序输入来自文本文件。文件中的每个数据集包含表示给定序列的两个字符串。序列由任意数量的空格分隔。输入的数据是正确的。对于每一组数据,程序在标准输出中从单独一行开始打印最大长度公共子序列的长度。)
输入描述:
abcfbc abfcab
programming contest
abcd mnp
输出描述:
4
2
0
样例输入:
abcfbc abfcab
programming contest
abcd mnp
样例输出:
4
2
0
AC代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <iostream>
using namespace std;
int dp[1005][1005];
char a[1005],b[1005];
int main()
{
    while(~scanf("%s %s",a,b))
    {
        memset(dp,0,sizeof(dp));
        int len1=strlen(a);
        int len2=strlen(b);
        for(int i=1; i<=len1; i++)
            for(int j=1; j<=len2; j++)
            {
                if(a[i-1]==b[j-1])
                    dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        printf("%d\n",dp[len1][len2]);
    }
    return 0;
}

在此,转载一篇自大佬博客里看见的另一个大佬写的文章:https://blog.youkuaiyun.com/nuoyanli/article/details/86489762

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值