A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use our secret weapon to eliminate the battleships. Each of the battleships can be marked a value of endurance. For every attack of our secret weapon, it could decrease the endurance of a consecutive part of battleships by make their endurance to the square root of it original value of endurance. During the series of attack of our secret weapon, the commander wants to evaluate the effect of the weapon, so he asks you for help.
You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.
Notice that the square root operation should be rounded down to integer.
Input
The input contains several test cases, terminated by EOF.
For each test case, the first line contains a single integer N, denoting there are N battleships of evil in a line. (1 <= N <= 100000)
The second line contains N integers Ei, indicating the endurance value of each battleship from the beginning of the line to the end. You can assume that the sum of all endurance value is less than 2 63.
The next line contains an integer M, denoting the number of actions and queries. (1 <= M <= 100000)
For the following M lines, each line contains three integers T, X and Y. The T=0 denoting the action of the secret weapon, which will decrease the endurance value of the battleships between the X-th and Y-th battleship, inclusive. The T=1 denoting the query of the commander which ask for the sum of the endurance value of the battleship between X-th and Y-th, inclusive.
Output
For each test case, print the case number at the first line. Then print one line for each query. And remember follow a blank line after each test case.
Sample Input
10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8
Sample Output
Case #1:
19
7
6
最多开放10次之后,数字变为1
所以tree[x]<=r-l+1时,直接略过。
而且给的数据区间不一定l<r,需要交换。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <string>
#include <vector>
#include <iostream>
using namespace std;
long long tree[400400];
int build(int l,int r,int now,long long num,int point)
{
if(l==r&&l==point)
{
tree[now]=num;
return 0;
}
int temp=(l+r)/2;
if(point<=temp)
{
build( l, temp, now*2, num, point);
}
else if(point>=temp+1)
{
build( temp+1, r, now*2+1, num, point);
}
tree[now]=tree[now*2]+tree[now*2+1];
return 0;
}
int change(int l,int r,int ln,int rn,int now)
{
if(tree[now]<=r-l+1)
return 0;
if(l==r)
{
tree[now]=(sqrt(1.0*tree[now]));
return 0;
}
int temp=(l+r)/2;
if(rn<=temp)
{
change( l, temp, ln, rn, now*2);
}
else if(ln>=temp+1)
{
change( temp+1, r, ln, rn, now*2+1);
}
else
{
change( l, temp, ln, rn, now*2);
change( temp+1, r, ln, rn, now*2+1);
}
tree[now]=tree[now*2]+tree[now*2+1];
return 0;
}
long long finding(int l,int r,int ln,int rn,int now)
{
if(ln<=l&&r<=rn)
{
return tree[now];
}
int temp=(l+r)/2;
if(rn<=temp)
{
return finding( l, temp, ln, rn, now*2);
}
else if(ln>=temp+1)
{
return finding( temp+1, r, ln, rn, now*2+1);
}
else
{
return finding( l, temp, ln, rn, now*2)+finding( temp+1, r, ln, rn, now*2+1);
}
return 0;
}
int main()
{
int i,j,n,t,l,sss=1,k;
int temp;long long pa;
while(scanf("%d",&t)!=EOF)
{
for(i=1;i<=t;i++)
{
scanf("%lld",&pa);
build(1,t,1,pa,i);
}
scanf("%d",&n);
printf("Case #%d:\n",sss);
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&j,&k,&l);
if(k>l)
{
temp=k;
k=l;
l=temp;
}
if(j==0)
{
change(1,t,k,l,1);
}
else
{
printf("%lld\n",finding(1,t,k,l,1));
}
}
sss++;
printf("\n");
memset(tree,0,sizeof tree);
}
return 0;
}