一、实现过程
1、准备数据
本文数据采取文献[1]给出的数据集,该数据集前8列为特征,最后1列为标签(0/1)。本模型使用pandas处理该数据集,需要注意的是,原始数据集没有特征名称,需要自己在第一行添加上去,否则,pandas会把第一行的数据当成特征名称处理,从而影响最后的分类效果。代码如下:
# 1、准备数据
import torch
import pandas as pd
import numpy as np
xy = pd.read_csv('G:/datasets/diabetes/diabetes.csv',dtype=np.float32) # 文件路径
x_data = torch.from_numpy(xy.values[:,:-1])
y_data = torch.from_numpy(xy.values[:,[-1]])
2、设计模型
本文采取文献[1]的思路,激活函数使用ReLU,最后一层使用Sigmoid函数,代码如下:
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self