PyTorch实现多维度特征输入的逻辑回归

本文档介绍了一个使用PyTorch构建的糖尿病数据集分类模型。首先,从CSV文件加载数据并预处理,接着定义了一个包含ReLU激活函数的神经网络模型,并在GPU上运行。模型训练过程中,采用BCELoss作为损失函数,SGD作为优化器。通过10000次迭代训练后,展示了损失值随迭代次数变化的曲线,并给出了最终的损失和79.31%的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实现过程

1、准备数据

本文数据采取文献[1]给出的数据集,该数据集前8列为特征,最后1列为标签(0/1)。本模型使用pandas处理该数据集,需要注意的是,原始数据集没有特征名称,需要自己在第一行添加上去,否则,pandas会把第一行的数据当成特征名称处理,从而影响最后的分类效果。代码如下:

# 1、准备数据
import torch
import pandas as pd
import numpy as np
xy = pd.read_csv('G:/datasets/diabetes/diabetes.csv',dtype=np.float32)	# 文件路径
x_data = torch.from_numpy(xy.values[:,:-1])
y_data = torch.from_numpy(xy.values[:,[-1]])

2、设计模型

本文采取文献[1]的思路,激活函数使用ReLU,最后一层使用Sigmoid函数,代码如下:

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值