算法分析与设计 实验三 动态规划

这篇博客介绍了动态规划在矩阵连乘问题、剪绳子问题和国王与金矿问题中的应用。通过解题思路阐述了如何利用动态规划求解最优解,包括矩阵连乘的最小乘次计算、剪绳子的最大乘积以及金矿挖掘的最优化策略。同时,还探讨了最长公共子序列问题的动态规划解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验环境

Windows 10+DEV-C++

动态规划

动态规划问题是算法设计与分析中的热门话题,如果要求一个问题最优解(通常是最大值或者最小值),而且该问题能够分解成若干个问题,并且小问题之间也存在重叠的子问题,则考虑采用动态规划。

使用动态规划的特征

使用动态规划特征:

  1. 求一个问题的最优解
  2. 大问题可以分解为子问题,子问题还有重叠的更小的子问题
  3. 整体问题最优解取决于子问题的最优解(状态转移方程)
  4. 从上往下分析问题,从下往上解决问题
  5. 讨论底层的边界问题

1.矩阵连乘问题

问题描述

给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如:
A1={30x35} ;A2={35x15} ;A3={15x5} ;A4={5x10} ;A5={10x20} ;A6={20x25} ;
最后的结果为:((A1(A2A3))((A4A5)A6)) 最小的乘次为15125。

解题思路

能用动态规划的一个性质就是最优子结构性质,也就是说计算A[i:j]的最优次序所包含的计算矩阵子琏A[i:k]和A[k+1:j]的次序也是最优的。动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算(即先从最小的开始计算)。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法。我们可以根据下面这个公式来计算结果。其中p[i-1]表示的是第i个矩阵的行数,p[k]表示i:k矩阵合起来后最后得到的列数,p[j]是k+1:j合起来后得到的列数。这个部分的计算方法其实就是计算两个矩阵相乘时总共的乘次数。
在这里插入图片描述

#include<iostream>
using namespace std;
 
const int N=7;
//p为矩阵链,p[0],p[1]代表第一个矩阵的行数和列数,p[1],p[2]代表第二个矩阵的行数和列数......length为p的长度
//所以如果有六个矩阵,length=7,m为存储最优结果的二维矩阵,s为存储选择最优结果路线的
//二维矩阵
void MatrixChainOrder(int *p,int m[N][N],int s[N][N],int length)
{
   
    int n=length-1;
    int l,i,j,k,q=0;
    //m[i][i]只有一个矩阵,所以相乘次数为0,即m[i][i]=0;
    for(i=1;i<length;i++)
    {
   
        m[i][i]=0;
    }
    //l表示矩阵链的长度
    // l=2时,计算 m[i,i+1],i=1,2,...,n-1 (长度l=2的链的最小代价)
    for(l=2;l<=n;l++)
    {
   
        for(i=1;i<=n-l+1;i++)
        {
   
            j=i+l-1; //以i为起始位置,j为长度为l的链的末位,
            m[i][j]=0x7fffffff;
            //k从i到j-1,以k为位置划分
            for(k=i;k<=j-1;k++)
            {
   
                q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(q<m[i][j])
                {
   
                    m[i][j]=q;
                    s[i]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拔牙不打麻药

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值