上篇文章对java的线程池做了一个简要的介绍,偏重使用方法的说明。这篇文章想从源码入手,去看看java的设计者们是如何实现线程池的。
ThreadPoolExecutor源码解析
前言
ThreadPoolExecutor线程池有5个状态,分别是
RUNNING
:工作线程接收任务,阻塞队列也接收任务SHUTDOWN
:工作线程不接收任务,但阻塞队列接收任务STOP
:工作线程不接收任务,但阻塞队列不接收任务TIDYING
:所有任务终止,当前工作线程数量为0,线程状态过渡到TIDYING,将执行terminated()方法TERMINATED
:terminated()方法调用完毕
状态直接的转变
RUNNING -> SHUTDOWN
:调用shutdown()方法, 也可能在finalize()方法里调用shutdown()方法
(RUNNING or SHUTDOWN) -> STOP
:调用shutdownNow()
SHUTDOWN -> TIDYING
: 任务队列和线程池都是空的
STOP -> TIDYING
: 线程池是空的
TIDYING -> TERMINATED
: terminated()执行完毕
在后面的代码中会看到大量关于状态或状态方法的判断,状态位是通过特定数字二进制位向左移动N位表示。后面源码中会看到大量关于状态的判断。
// 同时用来记录线程数量和线程池状态
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// 位操作获取状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 位操作获取工作线程数量
private static int workerCountOf(int c) { return c & CAPACITY; }
// 位操作值
private static int ctlOf(int rs, int wc) { return rs | wc; }
核心变量
public class ThreadPoolExecutor extends AbstractExecutorService {
// 任务队列
private final BlockingQueue<Runnable> workQueue;
// 线程池锁,用于同步对工作线程Set的操作
private final ReentrantLock mainLock = new ReentrantLock();
private final HashSet<Worker> workers = new HashSet<Worker>();
/**
* Wait condition to support awaitTermination
*/
private final Condition termination = mainLock.newCondition();
/**
* Tracks largest attained pool size. Accessed only under
* mainLock.
*/
private int largestPoolSize;
// 任务执行计数器
private long completedTaskCount;
// 创建线程工厂
private volatile ThreadFactory threadFactory;
// 拒绝策略
private volatile RejectedExecutionHandler handler;
// 闲置线程存活时间
private volatile long keepAliveTime;
/**
* If false (default), core threads stay alive even when idle.
* If true, core threads use keepAliveTime to time out waiting
* for work.
*/
private volatile boolean allowCoreThreadTimeOut;
// 核心线程数量
private volatile int corePoolSize;
// 最大线程数量
private volatile int maximumPoolSize;
// 默认拒绝策略
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
...
}
execute
方法。
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
// 步骤1 工作线程数量少于核心线程数量,调用addWorker开线程执行任务
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 步骤2 工作线程数量>核心线程数量,向任务队列中添加任务
if (isRunning(c) && workQueue.offer(command)) {
// 重新检查一下工作线程情况
int recheck = ctl.get();
// 在关闭线程池的时候会用到
if (! isRunning(recheck) && remove(command))
reject(command);
// 工作线程数量为0,创建一个不执行任务的线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 步骤3 使用最大线程数量创建线程执行任务
else if (!addWorker(command, false))
reject(command);
}
跟进去看看addWorker
方法。
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 线程池关闭判断
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
// 根据core参数判断到底是用核心线程数量还是最大线程数量
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// CAS增加工作线程数量
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 因为线程数量变化导致CAS失败,重试
if (runStateOf(c) != rs)
continue retry;
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 同步锁内增加工作线程
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 工作线程开始工作,先执行分配给自己的任务,再消费任务队列中的任务
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
内部类Worker
的实现。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable{
// 自带线程
final Thread thread;
// 构造时分配的任务,可以为null
Runnable firstTask;
// 执行任务计数器
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // runWorker前禁止中断
this.firstTask = firstTask;
// 当前Worker作为Runnable传递给线程执行,线程会执行run方法
this.thread = getThreadFactory().newThread(this);
}
// 调用上层方法runWorker
public void run() {
runWorker(this);
}
...
}
runWorker
方法。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // 允许中断
boolean completedAbruptly = true;
try {
// getTask()方法就是从任务队列workQueue中拉取任务
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
// TheadPoolExecutor的扩展方法,可以用来做一些任务执行的前置处理
// 后面afterExecute方法也是
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 任务执行完毕后处理 任务计数器 回收Worker 保持Worker数量稳定在核心数量
processWorkerExit(w, completedAbruptly);
}
}
以上分析了ThreadPoolExecutor的几个重要方法的源码,通过源码我们知道了线程池工作线程的创建和回收过程,贴个图加深一下理解