Codeforces 1433D Districts Connection

这篇博客讨论了一种算法问题,即在一个由n个区组成的镇上,每个区可能属于不同的土匪窝。目标是用n-1条道路连接所有区,但条件是同一土匪窝的区不能直接相连。解决方案是在读取输入时找到第一个不同土匪窝的区(标记为K),若未找到则输出“NO”,表示无法构建;否则,遍历所有区,与第一个区不同土匪窝的区之间直接连接,相同土匪窝的区则通过K连接。给出的C++代码实现了这一逻辑。

题目链接

题目大意:

一个镇上有 n 个区  一个区里有一个土匪窝  最初的时候 没有区是相互连接的

然后要 建 n-1  条道路来连接所有的区 (两个区域可以直接相连也可以通过其它连接的区域相连)

但是 同属一个土匪窝的区不能直接相连 

输出 可以构建的道路

 

解题思路:

直接在输入的时候 判断和第一个区 不在同一个土匪窝的是哪个区 标记为 K

如果输入完毕后 没有找到那个区 说明 所有区都是同一个土匪窝 输出 NO

否则就再遍历一遍  如果和第一个区不一个土匪窝  就在两个区之间修路

不然就在  K 和这个区之间修路

 

代码如下:

#include<iostream>
using namespace std;
const int maxn=1e4;
int a[maxn];
int main()
{
	int t;
	int n;
	int i,j,k;
	cin>>t;
	while(t--)
	{
		cin>>n;
		k=-1;
		cin>>a[1];
		for(i=2;i<=n;i++)
		{
			cin>>a[i];
			if(a[i]!=a[1])
			  k=i;
		}
		if(k==-1)
		{
			cout<<"NO"<<endl;
			continue;
		}
		else
		{
			cout<<"YES"<<endl;
			for(i=2;i<=n;i++)
			{
				if(a[i]!=a[1])
				{
					cout<<"1 "<<i<<endl;
				}
				else
				  cout<<k<<" "<<i<<endl;
			}
		}
	} 
    return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值