题目
There are some spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it’s horizontal, y-coordinates don’t matter, and hence the x-coordinates of start and end of the diameter suffice. The start is always smaller than the end.
An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps traveling up infinitely.
Given an array points where points[i] = [xstart, xend], return the minimum number of arrows that must be shot to burst all balloons.
Example 1:
Input: points = [[10,16],[2,8],[1,6],[7,12]]
Output: 2
Explanation: One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).
Example 2:
Input: points = [[1,2],[3,4],[5,6],[7,8]]
Output: 4
Example 3:
Input: points = [[1,2],[2,3],[3,4],[4,5]]
Output: 2
Example 4:
Input: points = [[1,2]]
Output: 1
Example 5:
Input: points = [[2,3],[2,3]]
Output: 1
Constraints:
0 <= points.length <= 104
points.length == 2
-231 <= xstart < xend <= 231 - 1
思路和代码
最开始想的暴力求解,对于每个区间,用count数组记录有多少个区间cover了这个数,但是超出了memory的限制。
class Solution {
public int findMinArrowShots(int[][] points) {
int min = Integer.MAX_VALUE, max = Integer.MIN_VALUE;
for (int[] point : points) {
min = Math.min(min, point[0]);
max = Math.max(max, point[1]);
}
int[] count = new int[max - min + 1];
for (int[] point : points) {
for (int temp = point[0]; temp <= point[1]; temp++) {
count[temp - min]++;
}
}
Arrays.sort(count);
int pSum = 0;
for (int i = 1; i <= count.length; i++) {
pSum += count[count.length - i];
if (pSum >= points.length) {
return i;
}
}
return -1;
}
}
然后考虑排序后融合,最后返回总区间个数减去融合的次数即为答案(融合完后剩下多少组分开的就需要多少箭)。每次比较这一个区间和上一个区间,如果后一个区间的左侧大于前一个的右侧,没有重合不做操作;如有则将当前区间改成融合后区间,继续和下一个做比较。
class Solution {
public int findMinArrowShots(int[][] points) {
int merge = 0;
Arrays.sort(points, (o1, o2) -> Integer.compare(o1[0], o2[0]));
for (int i = 1; i < points.length; i++) {
if (!(points[i][0] > points[i - 1][1])) {
//System.out.println(points[i][0] + " " + points[i][1]);
merge++;
points[i] = new int[] {points[i][0], Math.min(points[i][1], points[i - 1][1])};
}
}
return points.length - merge;
}
}
又因为刚才的做法每次都新建区间points[i],显然不合理,然后我们又看到新区间只有右边改变了,那考虑只记录右边端点值。
class Solution {
public int findMinArrowShots(int[][] points) {
if (points == null || points.length == 0) return 0;
int merge = 0;
// Arrays.sort(points, (o1, o2) -> {
// if (o1[0] != o2[0]) return Integer.compare(o1[0], o2[0]);
// return Integer.compare(o1[1], o2[1]);
// });
Arrays.sort(points, (o1, o2) -> Integer.compare(o1[0], o2[0]));
int right = points[0][1];
for (int i = 1; i < points.length; i++) {
if (!(points[i][0] > right)) {
//System.out.println(points[i][0] + " " + points[i][1]);
merge++;
right = Math.min(points[i][1], right);
} else {
right = points[i][1];
}
}
return points.length - merge;
}
}