PyTorch手写体数字实验

环境:PyTorch win10 Pycharm
可以改改net的层数,看看预测的acc有啥变化。

import numpy as np
import torch
from torchvision.datasets import mnist
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

def data_tf(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5
    x = x.reshape((-1,))
    x = torch.from_numpy(x)
    return x

train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True)
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)

train_data = DataLoader(train_set, batch_size=64, shuffle=True)
test_data = DataLoader(test_set, batch_size=128, shuffle=False)

a, a_label = next(iter(train_data))

# 使用 Sequential 定义 6 层神经网络
net = nn.Sequential(
    nn.Linear(784, 400),
    nn.ReLU(),
    nn.Linear(400, 300),
    nn.ReLU(),
    nn.Linear(300, 200),
    nn.ReLU(),
    nn.Linear(200, 100),
    nn.ReLU(),
    nn.Linear(100, 100),
    nn.ReLU(),
    nn.Linear(100,100),
    nn.ReLU(),
    nn.Linear(100, 10)
)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), 1e-1)

losses = []
acces = []
eval_losses = []
eval_acces = []

for e in range(20):
    train_loss = 0
    train_acc = 0
    net.train()
    for im, label in train_data:
        im = Variable(im)
        label = Variable(label)
        #前向传播
        out = net(im)
        loss = criterion(out, label)
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()

        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct /im.shape[0]
        train_acc += acc

    losses.append(train_loss / len(train_data))
    acces.append(train_acc / len(train_data))

    eval_loss = 0
    eval_acc = 0
    net.eval()
    for im, label in test_data:
        im = Variable(im)
        label = Variable(label)
        out = net(im)
        loss = criterion(out, label)

        eval_loss += loss.item()
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / im.shape[0]
        eval_acc += acc

    eval_losses.append(eval_loss / len(test_data))
    eval_acces.append(eval_acc / len(test_data))
    print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}'
          .format(e, train_loss / len(train_data), train_acc / len(train_data),
                  eval_loss / len(test_data), eval_acc / len(test_data)))

plt.title('train loss')
plt.plot(np.arange(len(losses)), losses)
plt.show()

plt.plot(np.arange(len(acces)), acces)
plt.title('train acc')
plt.show()

plt.plot(np.arange(len(eval_losses)), eval_losses)
plt.title('test loss')
plt.show()

plt.plot(np.arange(len(eval_acces)), eval_acces)
plt.title('test acc')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值