实现逐顶点的高光反射模型
前置知识点
// Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unity/Custom/01-Specular Vectex---Level"
{
Properties
{
_Diffuse ("Diffuse",Color) = (1,1,1,1)
_Specular("Specular",Color) = (1,1,1,1)
_Gloss("Gloss",Range(0,256)) = 20
}
SubShader
{
Pass
{
Tags { "LightMode"="ForwardBase" }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "Lighting.cginc"
fixed4 _Diffuse;
fixed4 _Specular;
float _Gloss;
struct a2v{
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f{
float4 pos : SV_POSITION;
fixed3 color : COLOR;
};
v2f vert(a2v v)
{
v2f o;
//顶点信息转换至世界空间
o.pos = UnityObjectToClipPos(v.vertex);
//获取环境光
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
//把顶点法线转换在世界坐标系中
fixed3 normal_in_world = normalize(mul(v.normal, (float3x3) unity_WorldToObject));
//获取入射光方向(光源方向)
fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
//计算漫反射 = 漫反射系数 * 光源 * max(0, 表面法线*光源方向)
fixed3 diffuse = _Diffuse.rgb * _LightColor0.rgb * saturate(dot(worldLight, normal_in_world));
//计算反射角度
fixed3 reflectDir = normalize(reflect( -worldLight, normal_in_world));
//获取视角方向
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld, v.vertex).xyz);
//计算高光反射 = 光源 * 高光反射系数 * pow(saturate(反射角度 * 视角方向) ,_Gloss)
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, viewDir)), _Gloss);
o.color = ambient + diffuse +specular;
return o;
}
fixed4 frag(v2f i) : SV_Target
{
return fixed4(i.color,1.0);
}
ENDCG
}
}
FallBack "Specular"
}
效果图
实现逐像素的高光反射模型
Shader "Unity/Custom/01-Specular Vectex---Level"
{
Properties
{
_Diffuse("Diffuse",Color) = (1,1,1,1)
_Specular("Specular",Color) = (1,1,1,1)
_Gloss("Gloss",Range(0,256)) = 20
}
SubShader
{
Pass
{
Tags { "LightMode" = "ForwardBase" }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "Lighting.cginc"
fixed4 _Diffuse;
fixed4 _Specular;
float _Gloss;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
float3 worldNormal : TEXCOORD0;
float3 worldPos : TEXCOORD1;
};
v2f vert(a2v v)
{
v2f o;
//顶点信息转换至世界空间
o.pos = UnityObjectToClipPos(v.vertex);
o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);
//转换法线的做法是 mul 的第一个参数是待转的值, 第二个参数是反过来的转换矩阵
o.worldPos = mul(unity_ObjectToWorld,v.vertex).xyz;
return o;
}
fixed4 frag(v2f i) : SV_Target
{
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
//把顶点法线转换在世界坐标系中
fixed3 normal_in_world = normalize(i.worldNormal);
//获取入射光方向(光源方向)
fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
//计算漫反射 = 漫反射系数 * 光源 * max(0, 表面法线*光源方向)
fixed3 diffuse = _Diffuse.rgb * _LightColor0.rgb * saturate(dot(worldLight, normal_in_world) * 0.5 + 0.5);
//计算反射角度
fixed3 reflectDir = normalize(reflect(-worldLight, normal_in_world));
//获取视角方向
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz -i.worldPos.xyz);
//计算高光反射 = 光源 * 高光反射系数 * pow(saturate(反射角度 * 视角方向) ,_Gloss)
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, viewDir)), _Gloss);
return fixed4(ambient + diffuse + specular,1.0);
}
ENDCG
}
}
FallBack "Specular"
}
效果图
经过几次代码编写,发现要熟练掌握shader光照模型对线性代数的基础知识要有一定了解,接下来回过头去补线性代数知识点。