从A开始,A作为定点,找到与A相连并且未被处理(不在顶点集合中)的进行处理,找到权值最小的并加入集合,A-C[7]、A-G[2]、A-B[5],最小的是A-G[2],所以把G加入集合,这里是有A-G的连接的。
然后把A、G作为顶点,找到与A、G相连未被处理的进行处理,A-C[7]、A-B[5]、G-E[4]、G-B[3]、G-F[6],最小的是G-B[3],把B加入集合,
直到全部遍历完成!
代码
package Algorithm.prim;
import java.util.Arrays;
public class PrimAlgorihm {
public static void main(String[] args) {
char data [] = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
int weight [][] = new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,1},
{10000,9,10000,10000,10000,4,1},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},
};
MGraph mGraph = new MGraph(verxs);
MinTree minTree = new MinTree();
minTree.createGraph(mGraph,verxs,data,weight);
minTree.showGraph(mGraph);
//测试普里姆算法
minTree.prim(mGraph,6);
}
}
//创建最小生成树 ->
class MinTree{
//创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 顶点个数
* @param data 各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char [] data, int weight [][]){
int i,j;
for (i = 0; i < verxs; i++) {
graph.data[i] = data[i];
for (j = 0; j < verxs; j++){
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的邻接矩阵
public void showGraph(MGraph graph){
for (int [] link : graph.weight){
System.out.println(Arrays.toString(link));
}
}
//编写prim算法,得到最小生成树
/**
*
* @param graph 图
* @param v 从图的哪个顶点开始生产
*/
public void prim(MGraph graph, int v){
//visited[] 标记顶点是否被访问过,默认都为0
int visited [] = new int[graph.verxs];
//把当前节点标记为以访问
visited[v] = 1;
//用h1和h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000;//将minWeight先初始化为一个大数,后面遍历过程中会被替换
for (int k = 0; k < graph.verxs -1; k++) {//因为有graph.verxs顶点,普里姆算法结束后,有graph.verxs-1边
//这个是确定每一次生成的子图,和哪个节点的距离最近
//就是把所有的节点都给遍历了,所有的线都遍历一遍,找到与当前顶点相连的未被访问过的
for (int i = 0; i < graph.verxs; i++) {//i节点表示被访问过的节点
for (int j = 0; j < graph.verxs; j++) {//j节点表示未被访问过的节点
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight){
//替换minWeight(寻找已经访问过的节点和未访问过的节点之间的权值最小的)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小的
System.out.println("边 <" + graph.data[h1]+","+graph.data[h2]+"> 权值:" + minWeight);
//把当前节点标记为已经访问过
visited[h2] = 1;
//重置minWeight
minWeight = 10000;
}
}
}
class MGraph{
int verxs; //图的节点个数
char[] data;//保存节点数据
int[][] weight;//存放边,邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}