import torch
x = torch.empty(5,3) #构造一个未初始化的5x3矩阵
print(x)
x = torch.rand(5,3) #构造一个随机初始化的矩阵
print(x)
x = torch.zeros(5,3,dtype = torch.long) #构造一个矩阵填充零
print(x)
x = torch.tensor([5.5,3]) #直接从数据构造张量
print(x)
x = x.new_ones(5,3,dtype = torch.double) #根据现有的张量创建张量
print(x)
x = torch.randn_like(x,dtype=torch.float)
print(x)
print(x.size()) #得到它的大小
y = torch.rand(5,3)
print(x+y) #加
print(torch.add(x,y))
y.add_(x) #任何使原位张量变形的操作都是用_后固定的 例如:x.copy_(y),x.t_(),将改变x
print(y)
print(x[:1]) #使用标准的numpy索引
x = torch.randn(1)
print(x)
print(x.item()) #获取值
a = torch.ones(5)
print(a)
b = a.numpy() #将tensor转换为numpy数组
print(b)
a.add_(1)
print(a)
print(b) # a与b改变是同步的、
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a) #numpy数组转换为tensor
np.add(a,1,out=a)
print(a)
print(b)