题目
The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3,105]), followed by N integer distances D1 D2 ⋯ DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:
5 1 2 4 14 9
3
1 3
2 5
4 1
Sample Output:
3
10
7
题目大意
这项任务非常简单:假设高速公路上有N个出口,形成一个简单的循环,你应该说出任何出口之间的最短距离。
输入规格:
每个输入文件包含一个测试用例。对于每种情况,第一行包含一个整数N(在[3,10^5]中),后跟N个整数距离d1d2⋯dn,其中D i是第i个出口和(i+1)-st出口之间的距离,dn是第N个出口和第1个出口之间的距离。一行中的所有数字都用空格隔开。第二行给出一个正整数M(≤10 ^4),后面是M行,每行包含一对出口编号,前提是出口编号从1到N。保证总往返距离不超过10 ^7。
输出规格:
对于每个测试用例,以M行打印结果,每行包含对应给定出口对之间的最短距离。
样本输入:
5 1 2 4 14 9
3
1 3
2 5
4 1
样本输出:
3
10
7
分析
模拟类型的题目
实际上就是求,一个点到另一个点的最短距离,是直接到这个点,还是通过环的另一半距离更短。
如果暴力解会超时,最后一个测试点通不过,所以要对数据进行预处理。这个预处理让我想起了树状数组。
代码
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n, sum = 0;
scanf("%d", &n);
int d[100010],dis[100010];
for (int i = 1; i <= n; i++)
{
scanf("%d", &d[i]);
sum += d[i];
dis[i] = sum;
}
int m;
scanf("%d", &m);
for (int i = 0; i < m; i++)
{
int sum1 = 0;
int a, b;
scanf("%d %d", &a, &b);
if (a < b) swap(a, b);
sum1 = dis[a-1] - dis[b-1];
printf("%d\n", min(sum1, sum - sum1));
}
return 0;
}
总结
我一直在纠结题目中的Di,Dn表示的距离,后来才发现i+1个点没有,而且是环形。。。被自己蠢哭了哭唧唧
注意此处预处理的方式!