java8 stream使用

分类

操作状态 方法
中间操作无状态unorder()
filter()
map()
mapToInt()
mapToDouble()
mapToLong()
flatMap()
flatMapToInt()
flatMapToDouble
flatMapToLong
peek()
有状态distinct()
sorted()
limit()
skip()
结束操作非短路操作forEach()
forEarchOrdered()
toArray()
reduce()
collect()
max()
min()
count()
短路操作anyMatch()
allMatch()
noneMatch()
findFirst()
findAny()
  • 无状态:指元素不受之前元素的影响
  • 有状态:指该操作只有拿到所有元素后才能继续下去
  • 非短路操作:指不许处理所有元素才能得到最终结果
  • 短路操作:指遇到某些符合条件的元素就可以得到最终结果,如:a||b 只有a为true,则无需执行判断b的结果

具体用法

流的创建

  • 集合Collection下的 stream() 和 parallelStream()方法:
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //获取一个顺序流
Stream<String> parallelStream = list.parallelStream(); //获取一个并行流
  • 数组下获取stream()
Integer[] nums = new Integer[10];
Stream<Integer> stream = Arrays.stream(nums);
  • Stream中的静态方法
Stream<Integer> stream = Stream.of(1,2,3,4,5,6);
Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 2).limit(6);
Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
  • BufferedReader.lines() 方法获取stream
BufferedReader reader = new BufferedReader(new FileReader("F:\\test_stream.txt"));
Stream<String> lineStream = reader.lines();
  • Pattern.splitAsStream()方法获取Stream
Pattern pattern = Pattern.compile(",");
Stream<String> stringStream = pattern.splitAsStream("a,b,c,d");

流的中间操作

筛选与切片
  • filter:过滤流中的某些元素
  • limit(n):获取n个元素
  • skip(n):跳过n个元素,配合limit(n)可实现分页
  • distinct:通过流中的元素hashCode()和equals()去重元素
Stream<Integer> stream = Stream.of(6, 4, 6, 7, 3, 9, 8, 10, 12, 14, 14);

Stream<Integer> newStream = stream.filter(s -> s > 5) //6 6 7 9 8 10 12 14 14
        .distinct() //6 7 9 8 10 12 14
        .skip(2) //9 8 10 12 14
        .limit(2); //9 8
newStream.forEach(System.out::println);

映射
  • map:接受一个函数作为参数,该函数会被应用到每个元素上,并将其映射成为一个新的元素
  • flatMap:接受一个函数作为参数,将六种的每一个指都换成另一个流,然后把所有流连接成一个流
List<String> list = Arrays.asList("a,b,c", "1,2,3");

//将每个元素转成一个新的且不带逗号的元素
Stream<String> s1 = list.stream().map(s -> s.replaceAll(",", ""));
s1.forEach(System.out::println); // abc  123

Stream<String> s3 = list.stream().flatMap(s -> {
    //将每个元素转换成一个stream
    String[] split = s.split(",");
    Stream<String> s2 = Arrays.stream(split);
    return s2;
});
s3.forEach(System.out::println); // a b c 1 2 3
排序
  • sorted():自然排序,六种元素需要实现Comparable接口
  • sorted(Comparator comp):定制排序,自定义Comparator排序器
List<String> list = Arrays.asList("aa", "ff", "dd");
//String 类自身已实现Compareable接口
list.stream().sorted().forEach(System.out::println);// aa dd ff

Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
Student s3 = new Student("aa", 30);
Student s4 = new Student("dd", 40);
List<Student> studentList = Arrays.asList(s1, s2, s3, s4);

//自定义排序:先按姓名升序,姓名相同则按年龄升序
studentList.stream().sorted(
        (o1, o2) -> {
            if (o1.getName().equals(o2.getName())) {
                return o1.getAge() - o2.getAge();
            } else {
                return o1.getName().compareTo(o2.getName());
            }
        }
).forEach(System.out::println);
消费
  • peek:如同map,能够得到流中的每一个元素。但是map接收的是一个Function表达式,有返回值。但是peek接收的是Consumer表达式,没有返回值
Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
List<Student> studentList = Arrays.asList(s1, s2);

studentList.stream()
        .peek(o -> o.setAge(100))
        .forEach(System.out::println);   

//结果:
Student{name='aa', age=100}
Student{name='bb', age=100}  

流终止操作

匹配、聚合操作
  • allMatch:接收一个Predicate函数,当流中的每个元素都符合该断言时才返回true,否则返回false
  • noneMatch:接收一个Predicate函数,当流中每个元素都不符合断言时才返回true,否则返回false
  • anyMatch:接收一个Predicate函数,只有流中的有一个元素满足该断言则返回true,否则返回false
  • findFirst:返回流中第一个元素
  • findAny:返回流中的任意一个元素
  • count:返回流中元素的中个数
  • max:返回流中元素最大值
  • min:返回流中元素最小值
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);

boolean allMatch = list.stream().allMatch(e -> e > 10); //false
boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
boolean anyMatch = list.stream().anyMatch(e -> e > 4);  //true

Integer findFirst = list.stream().findFirst().get(); //1
Integer findAny = list.stream().findAny().get(); //1

long count = list.stream().count(); //5
Integer max = list.stream().max(Integer::compareTo).get(); //5
Integer min = list.stream().min(Integer::compareTo).get(); //1
约束操作
  • Optional<T> reduce(BinaryOperator<T> accumulator):第一次执行时,accumulator 函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素。第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
  • T reduce(T identity, BinaryOperator<T> accumulator):流程跟上面一样,只是第一次执行时,accumulator 函数的第一个参数为 identity,而第二个参数为流中的第一个元素。
  • <U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner):在串行流(stream)中,该方法跟第二个方法一样,即第三个参数 combiner 不会起作用。

在并行流(parallelStream)中,我们知道流被 fork join 出多个线程进行执行,此时每个线程的执行流程就跟第二个方法 reduce(identity,accumulator)一样。
而第三个参数 combiner 函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法 reduce(accumulator)流程进行规约。

//经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24);

Integer v = list.stream().reduce((x1, x2) -> x1 + x2).get();
System.out.println(v);   // 300

Integer v1 = list.stream().reduce(10, (x1, x2) -> x1 + x2);
System.out.println(v1);  //310

Integer v2 = list.stream().reduce(0,
        (x1, x2) -> {
            System.out.println("stream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        (x1, x2) -> {
            System.out.println("stream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v2); // -300

Integer v3 = list.parallelStream().reduce(0,
        (x1, x2) -> {
            System.out.println("parallelStream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        (x1, x2) -> {
            System.out.println("parallelStream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v3); //197474048

收集操作Collector

Collector<T, A, R> 是一个接口,有以下 5 个抽象方法:

  • Supplier\<A> supplier():创建一个结果容器 A

  • BiConsumer<A, T> accumulator():消费型接口,第一个参数为容器 A,第二个参数为流中元素 T。

  • BinaryOperator\<A> combiner():函数接口,该参数的作用跟上一个方法(reduce)中的 combiner 参数一样,将并行流中各个子进程的运行结果(accumulator 函数操作后的容器 A)进行合并。

  • Function<A, R> finisher():函数式接口,参数为:容器 A,返回类型为:collect 方法最终想要的结果 R。

  • Set<Characteristics> characteristics():返回一个不可变的 Set 集合,用来表明该 Collector 的特征。

有以下三个特征:
CONCURRENT:表示此收集器支持并发。

UNORDERED:表示该收集操作不会保留流中元素原有的顺序。

IDENTITY_FINISH:表示 finisher 参数只是标识而已,可忽略。

Student s1 = new Student("aa", 10,1);
Student s2 = new Student("bb", 20,2);
Student s3 = new Student("cc", 10,3);
List<Student> list = Arrays.asList(s1, s2, s3);

//装成list
List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10]

//转成set
Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10]

//转成map,注:key不能相同,否则报错
Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10}

//字符串分隔符连接
String joinName = list.stream().map(Student::getName).collect(Collectors.joining(",", "(", ")")); // (aa,bb,cc)

//聚合操作
//1.学生总数
Long count = list.stream().collect(Collectors.counting()); // 3
//2.最大年龄 (最小的minBy同理)
Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20
//3.所有人的年龄
Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40
//4.平均年龄
Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334
// 带上以上所有方法
DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge));
System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());

//分组
Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge));
//多重分组,先根据类型分再根据年龄分
Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge)));

//分区
//分成两部分,一部分大于10岁,一部分小于等于10岁
Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));

//规约
Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值