MIT_线性代数笔记:第 22 讲 对角化和矩阵的幂


本讲中将学习如何对角化含有 n 个线性无关特征向量的矩阵,以及对角化是怎样简化计算的。

对角化矩阵 Diagonalizing a matrix S−1AS = Λ

如果矩阵 A 具有 n 个线性无关的特征向量,将它们作为列向量可以组成一个可逆方阵 S,并且有:
在这里插入图片描述
这里的矩阵 Λ 为对角阵,它的非零元素就是矩阵 A 的特征值。因为矩阵 S 中的列向量线性无关,因此逆矩阵 S-1存在。在等式两侧左乘逆矩阵,得到 S-1AS=Λ。同样地,A=SΛS-1。

对于消元法而言,矩阵有 LU 分解,对于施密特正交法,矩阵有 QR 分解,而上面的推导是一种新的矩阵分解。

矩阵的幂 Powers of A

特征值给矩阵的幂计算提供了方法。
如果 Ax=λx,则有 A 2 A^2 A2x=λAx= λ 2 λ^2 λ2x。说明矩阵 A 2 A^2 A2 有着和 A 一样的特征向量,而特征值为 λ 2 λ^2 λ2。我们将写成对角化形式则有: A 2 A^2 A2=SΛ S − 1 S^{-1} S1 S − 1 S^{-1} S1=S Λ 2 Λ^2 Λ2 S − 1 S^{-1} S1。做相同的处理还可以得到: A k A^k Ak =S Λ k Λ^k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值