10.1Harris角点检测
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
int main()
{
Mat srcImage = imread("ying.jpg", 0);//以灰度模式载入图像
imshow("原始图", srcImage);
Mat cornerStrength;//进行Harris角点检测
cornerHarris(srcImage, cornerStrength, 2, 3, 0.01);
Mat harrisCorner;//对灰度图进行阈值,得到二值图像
threshold(cornerStrength, harrisCorner, 0.00001, 255, THRESH_BINARY);
imshow("角点检测后的二值效果图", harrisCorner);
imwrite("ying1.jpg",harrisCorner);
waitKey(0);
return 0;
}
程序原始图:
程序执行后的结果:
10.15harris角点检测综合示例程序:
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
#define WINDOW_NAME1 "程序窗口1"
#define WINDOW_NAME2 "程序窗口2"
Mat g_srcImage, g_srcImage1, g_grayImage;
int thresh = 30;
int max_thresh = 175;
void on_CornerHarris(int, void*);
int main(int argc,char** argv)
{
g_srcImage = imread("huashan.jpg", 1);
if (!g_srcImage.data) { cout << "fail to load image" << endl;return false; }
imshow("原始图", g_srcImage);
g_srcImage1 = g_srcImage.clone();//克隆原始图
cvtColor(g_srcImage, g_grayImage,COLOR_BGR2GRAY);//灰度变换
namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
createTrackbar("阈值", WINDOW_NAME1, &thresh, max_thresh, on_CornerHarris);
on_CornerHarris(0, 0);//调用一次回调函数并初始化
waitKey(0);
return(0);
}
void on_CornerHarris(int, void*)
{
Mat dstImage, normImage, scaledImage;
//置零当前需要显示的两幅图,即清楚上一次调用次函数是他们得值
dstImage = Mat::zeros(g_srcImage.size(), CV_32FC1);
g_srcImage1 = g_srcImage.clone();
cornerHarris(g_grayImage, dstImage, 2, 3, 0.04, BORDER_DEFAULT);
normalize(dstImage, normImage, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(normImage, scaledImage);//将归一化后的图变换成8位无符号整型
for (int j = 0;j < normImage.rows;j++)//将符合阈值条件的角点绘制出来
{
for (int i = 0;i < normImage.cols;i++)
{
if ((int)normImage.at<float>(j, i)>thresh + 80)
{
circle(g_srcImage, Point(i, j), 5, Scalar(10, 10, 255), 2, 8, 0);
circle(scaledImage, Point(i, j), 5, Scalar(0, 10, 255), 2, 8, 0);
}
}
}
imshow(WINDOW_NAME1, g_srcImage1);
imshow(WINDOW_NAME2, scaledImage);
}
程序执行结果如图:
10.2 Shi-Tomasi角点检测:
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
#define WINDOW_NAME "Shi-Tomasi角点检测"
Mat g_srcImage, g_grayImage;
int g_maxCornerNumber = 33;
int g_maxTrackbarNumber = 500;
RNG g_rng(12345);
void on_GoodFeaturesToTrack(int, void*)
{
if (g_maxCornerNumber <= 1) { g_maxCornerNumber = 1; }//变量小于1时,变量置1
vector<Point2f>corners;
double qualityLevel=0.01;//角点检测可接受的最小特征值
double minDistance = 10;//角点之间的最小距离
int blockSize = 3;//计算导数自相关矩阵时指定的邻域范围
double k = 0.04;//权重系数
Mat copy = g_srcImage.clone();
goodFeaturesToTrack(g_grayImage, corners, g_maxCornerNumber, qualityLevel,
minDistance, Mat(), blockSize, false, k);
//g_maxCornerNumber:角点的最大数量, Mat():感兴趣区域,false:不使用Harris角点检测测
cout << "此次检测到的角点数量为:" << corners.size() << endl;
int r = 4;//绘制检测到的角点
for (unsigned int i = 0;i < corners.size();i++)
{
circle(copy, corners[i], r, Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255),
g_rng.uniform(0, 255)), -1, 8, 0);
imshow(WINDOW_NAME, copy);
}
}
int main()
{
g_srcImage = imread("huashan.jpg", 1);
cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);
namedWindow(WINDOW_NAME, WINDOW_AUTOSIZE);
createTrackbar("最大角点数", WINDOW_NAME, &g_maxCornerNumber,
g_maxTrackbarNumber, on_GoodFeaturesToTrack);
imshow(WINDOW_NAME, g_srcImage);
on_GoodFeaturesToTrack(0, 0);
waitKey(0);
return 0;
}
程序执行结果如图:
10.3亚像素级角点检测
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
#define WINDOW_NAME "Shi-Tomasi角点检测"
Mat g_srcImage, g_grayImage;
int g_maxCornerNumber = 33;
int g_maxTrackbarNumber = 500;
RNG g_rng(12345);
void on_GoodFeaturesToTrack(int, void*)
{
if (g_maxCornerNumber <= 1) { g_maxCornerNumber = 1; }//变量小于1时,变量置1
vector<Point2f>corners;
double qualityLevel=0.01;//角点检测可接受的最小特征值
double minDistance = 10;//角点之间的最小距离
int blockSize = 3;//计算导数自相关矩阵时指定的邻域范围
double k = 0.04;//权重系数
Mat copy = g_srcImage.clone();
goodFeaturesToTrack(g_grayImage, corners, g_maxCornerNumber, qualityLevel,
minDistance, Mat(), blockSize, false, k);
//g_maxCornerNumber:角点的最大数量, Mat():感兴趣区域,false:不使用Harris角点检测测
cout << "此次检测到的角点数量为:" << corners.size() << endl;
int r = 4;//绘制检测到的角点
for (unsigned int i = 0;i < corners.size();i++)
{
circle(copy, corners[i], r, Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255),
g_rng.uniform(0, 255)), -1, 8, 0);
imshow(WINDOW_NAME, copy);
Size winSize = Size(5, 5);//搜索窗口的一半尺寸
Size zeroZone = Size(-1, -1);//死区的一半尺寸.(-1,-1,)表示没有死区
TermCriteria criteria = TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 40, 0.001);
//criteria:角点迭代过程的终止条件,可以是最大迭代数目,或设定的精确度
cornerSubPix(g_grayImage, corners, winSize, zeroZone, criteria);
for (int i = 0;i < corners.size();i++)
{
cout << "\t精确角点坐标[" << i << "](" << corners[i].x << "," << corners[i].y << ")" << endl;
}
}
}
int main()
{
g_srcImage = imread("huashan.jpg", 1);
cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);
namedWindow(WINDOW_NAME, WINDOW_AUTOSIZE);
createTrackbar("最大角点数", WINDOW_NAME, &g_maxCornerNumber,
g_maxTrackbarNumber, on_GoodFeaturesToTrack);
imshow(WINDOW_NAME, g_srcImage);
on_GoodFeaturesToTrack(0, 0);
waitKey(0);
return 0;
}
程序执行结果如图: