到目前为止,我们已经介绍了处理存储在张量中数据的各种技术。为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始,而不是从那些准备好的张量格式数据开始。在Python中常用的数据分析工具中,通常使用pandas软件包。像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。因此,我们将简要介绍使用pandas预处理原始数据并将原始数据转换为张量格式的步骤。我们将在后面的章节中介绍更多的数据预处理技术。
读取数据集
举一个例子,我们首先(创建一个人工数据集,并存储在csv(逗号分隔值)文件)…/data/house_tiny.csv中。以其他格式存储的数据也可以通过类似的方式进行处理。下面的mkdir_if_not_exist函数可确保目录…/data存在。注意,注释#@save是一个特殊的标记,该标记下方的函数、类或语句将保存在d2l软件包中,以便以后可以直接调用它们(例如d2l.mkdir_if_not_exist(path))而无须重新定义。
下面我们将数据集按行写入CSV文件中。
import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
要[从创建的CSV文件中加载原始数据集],我们导入pandas包并调用read_csv函数。该数据集有四行三列。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。
# 如果没有安装pandas,只需取消对以下行的注释:
# !pip install pandas