1.坐标图
plt.plot()
2.饼图
plt.pie()
import matplotlib.pyplot as plt
labels = 'Frogs','Hogs','Dogs','Logs'
sizes = [15,30,45,10]
explode = (0,0.1,0,0)
#autopct百分百显示效果,startangle起始角度,shadow阴影效果
plt.pie(sizes,explode = explode,labels = labels,autopct = '%1.1f%%',shadow=True,startangle=90)
plt.show()
shadow为False时:
如果想要饼图横纵尺寸一样,即为正方形,在显示之前增加 plt.axis(‘equal’)
3.直方图绘制
plt.hist()
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
mu,sigma = 100,20 #均值,标准差
a = np.random.normal(mu,sigma,size=100)
#第二个参数为直方图的个数
plt.hist(a,20,normed = 1,histtype = 'stepfilled',facecolor = 'b',alpha = 0.75)
plt.title('Histogram')
plt.show()
4.极坐标图
import numpy as np
import matplotlib.pyplot as plt
#N表示极坐标图个数
N=20
theta = np.linspace(0.0,2*np.pi,N,endpoint=False)
radii = 10*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
ax = plt.subplot(111,projection = 'polar')
bars = ax.bar(theta,radii,width=width,bottom=0.0)
for r,bar in zip(radii,bars):
bar.set_facecolor(plt.cm.viridis(r/10.))
bar.set_alpha(0.5)
plt.show()
5.散点图
import numpy as np
import matplotlib.pyplot as plt
fig,ax = plt.subplots()
ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
ax.set_title('Simple Scatter')
plt.show()