数据并行/设备并行,keras实现

本文探讨了在深度学习框架中实现数据并行和设备并行的方法,使用Keras和TensorFlow示例展示了如何在多个GPU上分布模型训练,以及如何在不同GPU上并行处理两个独立序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

数据并行代码

from keras.utils import multi_gpu_model

# Replicates `model` on 8 GPUs.
# This assumes that your machine has 8 available GPUs.
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss='categorical_crossentropy',
                       optimizer='rmsprop')

# This `fit` call will be distributed on 8 GPUs.
# Since the batch size is 256, each GPU will process 32 samples.
parallel_model.fit(x, y, epochs=20, batch_size=256)

设备并行代码

# Model where a shared LSTM is used to encode two different sequences in parallel
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))

shared_lstm = keras.layers.LSTM(64)

# Process the first sequence on one GPU
with tf.device_scope('/gpu:0'):
    encoded_a = shared_lstm(tweet_a)
# Process the next sequence on another GPU
with tf.device_scope('/gpu:1'):
    encoded_b = shared_lstm(tweet_b)

# Concatenate results on CPU
with tf.device_scope('/cpu:0'):
    merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
                                             axis=-1)

待解决pytorch实现数据并行,欢迎留言,有待后续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值