import pretrainedmodels
base_model='resnet101'
base_model=pretrainedmodels.__dict__[base_model](num_classes=1000,pretrained='imagenet')
n_segment_list=[n_segment]*4
isinstance(base_model,torchvision.models.ResNet) # True
stage=net.layer1
blocks=list(stage.children())
print(blocks)
Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3,