【目标检测系列】YOLOV1解读

前言

从R-CNN到Fast-RCNN,之前的目标检测工作都是分成两阶段,先提供位置信息在进行目标分类,精度很高但无法满足实时检测的要求。

而YoLo将目标检测看作回归问题,输入为一张图片,输出为S*S*(5*B+C)的三维向量。该向量结果既包含位置信息,又包含类别信息。可通过损失函数,将目标检测与分类同时进行,能够满足实时性要求。

接下来给出YOLOV1的网络结构图

核心思想

YOLO将目标检测问题作为回归问题。会将输入图像分为S*S的网格,如果一个物体的中心点落到一个cell中,那么该cell就要负责预测该物体,一个格子只能预测一个物体,同时会生成B个预测框。

对于每个cell:

  • 含有B个预测边界框,这些框大小尺寸等等都随便,只有一个要求,就是生成框的中心点必须在cell中,每个框都有一个置信度分数(confidence score)。这些框的置信度分数反映了该模型对某个框内是否含有目标的置信度ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

怀逸同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值