Strategic Game(树形DP)

本文介绍了一种使用树形动态规划解决守城问题的方法,目标是在给定的树形结构中,确保每条边至少被一个点观察,同时最小化所需点的数量。通过递归地计算每个节点的状态,文章提供了一个简洁有效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Strategic Game(树形DP)

题目

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format

node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier 
or 
node_identifier:(0) 

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

375f7d616782d8d9876a06e39b58fc3c?v=1564250436

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:
Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
Output
1
2
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
Sample Output
1
2

题意

给定一棵树,树的每一个边至少要有一个点,求最少要多少点。

思路

简单的树形dp

  • 因为要从自己点推父节点,所以可以使用递归。
  • 父节点不放的话,子节点必须放。父节点放的话子节点可放可不放。
    故得到:
    dp[u][0] += dp[v][1];
    dp[u][1] += min(dp[v][0], dp[v][1]);

题解

//简单的树形dp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#define N 1805
using namespace std;

vector<int> eg[N];
int dp[N][N];
int parent[N];
int n;

int dfs(int u)
{
   dp[u][0] = 0;
   dp[u][1] = 1;//自己放的话先加上自己的,子节点的在下面遍历他们的时候会加上。

   for (int i = 0; i < eg[u].size(); i++)
   {
      int v = eg[u][i];
      dfs(v);
      dp[u][0] += dp[v][1];
      dp[u][1] += min(dp[v][0], dp[v][1]);
   }
}

int main()
{

   while (scanf("%d", &n) != EOF)
   {
      memset(parent, -1, sizeof parent);
      memset(dp, 0, sizeof dp);
      int x, k, y;
      for (int i = 0; i < n; i++)
      {
         scanf("%d:(%d)", &x, &k);
         for (int j = 0; j < k; j++)
         {
            scanf("%d", &y);
            parent[y] = x;
            eg[x].push_back(y);
         }
      }

      int root = 0;
      while (parent[root] != -1)
      {
         root = parent[root];
      }
      dfs(root);
      cout << min(dp[root][0], dp[root][1]) << endl;
      for (int i = 0; i < n; i++)
         eg[i].clear();
      //
   }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值