Autoware主要的模块解释以及框架

文章详细介绍了自动驾驶系统中的感知模块(包括定位、检测和预测),以及Computing模块中的Localization、Detection、Prediction部分,涉及SLAM、传感器融合、深度学习和多种算法的应用。同时涵盖了路线规划、车道规划和运动规划的关键组件及其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、主要包括感知和规划两大部分。
感知包括定位模块,检测模块,预测模块。定位模块使用3D map和SLAM算法来实现,辅助以GNSS和IMU传感器。检测模块使用摄像头和激光雷达,结合传感器融合算法和深度学习网络进行目标检测。预测模块使用定位和检测的结果来预测跟踪目标。
2、Computing 模块的解释
1.1 Localization

lidar_localizar 计算车辆当在全局坐标的当前位置(x,y,z,roll,pitch,yaw),使用LIDAR的扫描数据和预先构建的地图信息。autoware推荐使用正态分布变换(NDT)算法来匹配激光雷达当前帧和3D map。

gnss_localizer 转换GNSS接收器发来的NEMA消息到位置信息(x,y,z,roll,pitch,yaw)。结果可以被单独使用为车辆当前位置,也可以作为lidar_localizar的初始参考位置。

dead_reckoner 主要使用IMU传感器预测车辆的下一帧位置,也可以用来对lidar_localizar和gnss_localizar的结果进行插值。
1.2 Detection

lidar_detector 从激光雷达单帧扫描读取点云信息,提供基于激光雷达的目标检测。主要使用欧几里德聚类算法,从地面以上的点云得到聚类结果。除此之外,可以使用基于卷积神经网路的算法进行分类,包括VoxelNet,LMNet.

image_detector 读取来自摄像头的图片,提供基于图像的目标检测。主要的算法包括R-CNN,SSD和Yolo,可以进行多类别(汽车,行人等)实时目标检测。

image_tracker 使用image_detector的检测结果完成目标跟踪功能。算法基于Beyond Pixels,图像上的目标跟踪结果被投影到3D空间,结合lidar_detector的检测结果输出最终的目标跟踪结果。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值