引例:
import numpy as np
a = [1, 2, 3, 6, 8, 2, 5, 10, 11]
b = np.array(a)
print('输出 b 的值为:', b)
c = b[0:6]
print('输出 c 的值为:', c)
d = b[0:6].mean()
print('输出 d 的值为:', d)
s = sum(a[0:6])
print('a 中前六个数的平均值为:', s/6)
结果为:
输出 b 的值为: [ 1 2 3 6 8 2 5 10 11]
输出 c 的值为: [1 2 3 6 8 2]
输出 d 的值为: 3.6666666666666665
a 中前六个数的平均值为: 3.6666666666666665
论文中:
self.cost_his.append(cost)
self.arr_cost_his = np.array(self.cost_his) # 这里是弄成一维矩阵
self.avg_cost = self.arr_cost_his[max(0, self.learn_step_counter - 10):self.learn_step_counter + 1].mean()
self.avg_cost_s.append(self.avg_cost)
过程为: [L0,L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15......]
[L0, L1]
[L0, L1, L2]
[L0, L1, L2, L3]
…
[L0,L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11]
然后有
[L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12]
[L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13]
…