马尔可夫流量的测量
轨迹( trajectories )和流量( flows )
Def 1. 一个有向图用
(
S
,
A
)
(\mathcal{S}, \mathbb{A})
(S,A) 表示,其中
S
\mathcal{S}
S 为状态的集合,
A
\mathbb{A}
A 为
S
×
S
\mathcal{S} \times \mathcal{S}
S×S 大小的有向边的子集。
A
\mathbb{A}
A 中的元素表示为
s
→
s
′
s \rightarrow s'
s→s′ ,叫做 边缘( edges ) 或 转移( transitions ) 。
图中的 轨迹( trajectory ) 为序列
τ
=
(
s
1
,
…
,
s
n
)
\tau = (s_1, …, s_n)
τ=(s1,…,sn) ,每个转移
s
t
→
s
t
+
1
∈
A
s_t \rightarrow s_{t+1} \in \mathbb{A}
st→st+1∈A 。
s
∈
τ
s \in \tau
s∈τ 表示
s
s
s 在轨迹
τ
\tau
τ 中。
有向非循环图( directed acyclic graph, DAG ) 为对于所有轨迹
τ
=
(
s
1
,
…
,
s
n
)
\tau = (s_1, …, s_n)
τ=(s1,…,sn) 都不满足
s
n
=
s
1
s_n = s_1
sn=s1 的有向图,只含有一个状态的轨迹除外。
Def 2. 对于 DAG ,定义 partial order 用 < < < 表示。 s < s ′ s < s' s<s′ 表示存在从 s s s 开始并结束于 s ′ s' s′ 的轨迹。如果 s s s 和 s ′ s' s′ 之间没有轨迹,记为 s ≶ s ′ s \lessgtr s' s≶s′ 。作者允许两状态之间最多有一条有向边连接。
Def 3. 本文仅考虑能定义两种特殊状态 源状态( source state or initial state ) s 0 s_0 s0 和 汇状态( sink state or final state ) s f s_f sf 的 DAG ,即 ∀ s , s 0 < s , s < s f \forall s, s_0 < s, s < s_f ∀s,s0<s,s<sf 。定义从 s 0 s_0 s0 开始 s f s_f sf 结束的轨迹为 完整轨迹( complete trajectory ) 。定义 T \mathcal{T} T 表示所给 DAG 中所有完整轨迹的集合。
Def 4. 称 s → s f s \rightarrow s_f s→sf 为 终止转移( terminating transition ) ,称 F ( s → s f ) F(s \rightarrow s_f) F(s→sf) 为 终止流量( terminating flow ) ,通过边缘 s → s ’ s \rightarrow s’ s→s’ 的流量被称为 边缘流量( edge flow ) 。在轨迹 ( s 0 , s 1 , … , s n , s f ) (s_0, s_1, …, s_n, s_f) (s0,s1,…,sn,sf) 中, s n s_n sn 被称为 终止状态( terminating state ) 。
Def 5. 定义 轨迹流量( trajectory flow ) F : T ↦ R + F: \mathcal{T} \mapsto \mathbb{R}^+ F:T↦R+ 为在完整轨迹集 T \mathcal{T} T 上的任意非负函数。
Def 6. 状态流量( flow through a state or state flow)
F
:
S
↦
R
F: \mathcal{S} \mapsto \mathbb{R}
F:S↦R 为通过某一状态的完整轨迹的流量总和
F
(
s
)
=
∑
s
∈
τ
,
τ
∈
T
F
(
τ
)
F(s) = \sum_{s \in \tau, \tau \in \mathcal{T}} F(\tau)
F(s)=s∈τ,τ∈T∑F(τ)
Def 7. 定义子集
A
⊆
T
A \subseteq \mathcal{T}
A⊆T 为事件,它的流量为事件中完整轨迹的流量之和
F
(
A
)
=
∑
τ
∈
A
F
(
τ
)
F(A) = \sum_{\tau \in A} F(\tau)
F(A)=τ∈A∑F(τ)
Def 8. 定义 联合事件 A 和 B 的流量为两事件交集的流量,即
F
(
A
∩
B
)
=
∑
τ
∈
A
∩
B
F
(
τ
)
F(A \cap B) = \sum_{\tau \in A \cap B} F(\tau)
F(A∩B)=τ∈A∩B∑F(τ)
流量的概率度量
Def 9. 总流量( total flow )
Z
Z
Z 为所有完整轨迹的流量之和
Z
:
=
∑
τ
∈
T
F
(
τ
)
Z := \sum_{\tau \in \mathcal{T}} F(\tau)
Z:=τ∈T∑F(τ)
Prop 1. 源节点的流量等于汇节点的流量等于总流量。
Proof.
∀
τ
∈
T
,
s
0
∈
τ
,
s
f
∈
τ
\forall \tau \in \mathcal{T}, s_0 \in \tau, s_f \in \tau
∀τ∈T,s0∈τ,sf∈τ
F
(
s
0
)
=
∑
s
0
∈
τ
,
τ
∈
T
F
(
τ
)
=
∑
τ
∈
T
F
(
τ
)
=
Z
F
(
s
f
)
=
∑
s
f
∈
τ
,
τ
∈
T
F
(
τ
)
=
∑
τ
∈
T
F
(
τ
)
=
Z
F(s_0) = \sum_{s_0 \in \tau, \tau \in \mathcal{T}} F(\tau) = \sum_{\tau \in \mathcal{T}} F(\tau) = Z \\ F(s_f) = \sum_{s_f \in \tau, \tau \in \mathcal{T}} F(\tau) = \sum_{\tau \in \mathcal{T}} F(\tau) = Z
F(s0)=s0∈τ,τ∈T∑F(τ)=τ∈T∑F(τ)=ZF(sf)=sf∈τ,τ∈T∑F(τ)=τ∈T∑F(τ)=Z
Def 10. 将轨迹流量
F
F
F 与概率度量
P
P
P 相关联
P
(
τ
)
=
F
(
τ
)
∑
τ
∈
T
F
(
τ
)
=
F
(
τ
)
Z
P(\tau) = \frac{F(\tau)}{\sum_{\tau \in \mathcal{T}} F(\tau)} = \frac{F(\tau)}{Z}
P(τ)=∑τ∈TF(τ)F(τ)=ZF(τ)
Def 11. 对于任意事件
A
⊆
T
A \subseteq \mathcal{T}
A⊆T ,定义这个事件的概率为
P
(
A
)
=
F
(
A
)
Z
P(A) = \frac{F(A)}{Z}
P(A)=ZF(A)
Prop 2. 轨迹穿过源状态
s
0
s_0
s0 的概率为 1 。
Proof.
P
(
s
0
)
=
F
(
s
0
)
Z
=
Z
Z
=
1
P(s_0) = \frac{F(s_0)}{Z} = \frac{Z}{Z} = 1
P(s0)=ZF(s0)=ZZ=1
Def 12. 给定事件 B 时事件 A 的条件概率 为
P
(
A
∣
B
)
=
P
(
A
,
B
)
P
(
B
)
=
F
(
A
∩
B
)
F
(
B
)
P(A | B) = \frac{P(A, B)}{P(B)} = \frac{F(A \cap B)}{F(B)}
P(A∣B)=P(B)P(A,B)=F(B)F(A∩B)
Def 13. 定义前向转移概率,表示为
P
F
(
s
′
∣
s
)
=
P
(
s
→
s
′
∣
s
)
=
F
(
s
→
s
′
)
F
(
s
)
P_F(s'| s) = P(s \rightarrow s' | s) = \frac{F(s \rightarrow s')}{F(s)}
PF(s′∣s)=P(s→s′∣s)=F(s)F(s→s′)
定义后向转移概率,表示为
P
B
(
s
∣
s
′
)
:
=
P
(
s
→
s
′
∣
s
′
)
=
F
(
s
→
s
′
)
F
(
s
′
)
P_B(s | s') := P(s \rightarrow s' | s') = \frac{F(s \rightarrow s')}{F(s')}
PB(s∣s′):=P(s→s′∣s′)=F(s′)F(s→s′)
马尔可夫流量( markovian flows)
Def 14. 有着概率度量
P
P
P 的流量称为马尔可夫流量。对于具有出边
s
→
s
′
s \rightarrow s'
s→s′ 的状态
s
s
s ,任意以
s
s
s 结束的轨迹
τ
=
(
s
1
,
…
,
s
)
\tau = (s_1, …, s)
τ=(s1,…,s) ,有
P
(
s
→
s
′
∣
τ
)
=
P
(
s
→
s
′
∣
s
)
=
P
F
(
s
′
∣
s
)
P(s \rightarrow s' | \tau) = P(s \rightarrow s' | s) = P_F(s' | s)
P(s→s′∣τ)=P(s→s′∣s)=PF(s′∣s)
Prop 3. 对于马尔可夫流量以及一个完整轨迹
τ
=
(
s
0
,
s
1
,
…
,
s
n
)
,
s
n
=
s
f
\tau = (s_0, s_1, …, s_n), s_n = s_f
τ=(s0,s1,…,sn),sn=sf ,可得
P
(
τ
)
=
∏
t
=
1
n
P
F
(
s
t
∣
s
t
−
1
)
F
(
τ
)
=
Z
∏
t
=
1
n
P
F
(
s
t
∣
s
t
−
1
)
=
∏
t
=
1
n
F
(
s
t
−
1
→
s
t
)
∏
t
=
1
n
−
1
F
(
s
t
)
F
(
τ
)
=
Z
∏
t
=
1
n
P
B
(
s
t
−
1
∣
s
t
)
P
(
τ
)
=
∏
t
=
1
n
P
B
(
s
t
−
1
∣
s
t
)
P(\tau) = \prod_{t=1}^n P_F(s_t | s_{t-1}) \\ F(\tau) = Z \prod_{t=1}^n P_F(s_t | s_{t-1}) = \frac{\prod_{t=1}^n F(s_{t-1} \rightarrow s_t)}{\prod_{t=1}^{n-1}F(s_t)} \\ F(\tau) = Z \prod_{t=1}^n P_B(s_{t-1} | s_t) \\ P(\tau) = \prod_{t=1}^n P_B(s_{t-1} | s_t)
P(τ)=t=1∏nPF(st∣st−1)F(τ)=Zt=1∏nPF(st∣st−1)=∏t=1n−1F(st)∏t=1nF(st−1→st)F(τ)=Zt=1∏nPB(st−1∣st)P(τ)=t=1∏nPB(st−1∣st)
Proof. 对于式一
P
(
τ
)
=
P
(
s
0
→
s
1
→
⋯
→
s
n
)
=
P
(
s
0
→
s
1
)
∏
t
=
1
n
−
1
P
(
s
t
→
s
t
+
1
∣
s
0
→
⋯
→
s
t
)
=
P
(
s
0
→
s
1
)
∏
t
=
1
n
−
1
P
(
s
t
→
s
t
+
1
∣
s
t
)
=
P
(
s
0
)
P
F
(
s
1
∣
s
0
)
∏
t
=
1
n
−
1
P
F
(
s
t
+
1
∣
s
t
)
=
∏
t
=
1
n
P
F
(
s
t
∣
s
t
−
1
)
\begin{aligned} P(\tau) &= P(s_0 \rightarrow s_1 \rightarrow \dots \rightarrow s_n) \\ &= P(s_0 \rightarrow s_1) \prod_{t=1}^{n-1} P(s_t \rightarrow s_{t+1} | s_0 \rightarrow \dots \rightarrow s_t) \\ &= P(s_0 \rightarrow s_1) \prod_{t=1}^{n-1} P(s_t \rightarrow s_{t+1} | s_t) \\ &= P(s_0)P_F(s_1 | s_0) \prod_{t=1}^{n-1} P_F(s_{t+1} | s_t) \\ &= \prod_{t=1}^n P_F(s_t | s_{t-1}) \end{aligned}
P(τ)=P(s0→s1→⋯→sn)=P(s0→s1)t=1∏n−1P(st→st+1∣s0→⋯→st)=P(s0→s1)t=1∏n−1P(st→st+1∣st)=P(s0)PF(s1∣s0)t=1∏n−1PF(st+1∣st)=t=1∏nPF(st∣st−1)
对于式二
F
(
τ
)
=
Z
P
(
τ
)
=
F
(
s
0
)
∏
t
=
1
n
P
F
(
s
t
∣
s
t
−
1
)
=
F
(
s
0
)
∏
t
=
1
n
F
(
s
t
−
1
→
s
t
)
F
(
s
t
−
1
)
=
∏
t
=
1
n
F
(
s
t
−
1
→
s
t
)
∏
t
=
1
n
−
1
F
(
s
t
)
\begin{aligned} F(\tau) &= ZP(\tau) \\ &= F(s_0) \prod_{t=1}^n P_F(s_t | s_{t-1}) \\ &= F(s_0) \prod_{t=1}^n \frac{F(s_{t-1} \rightarrow s_t)}{F(s_{t-1})} \\ &= \frac{\prod_{t=1}^n F(s_{t-1} \rightarrow s_t)}{\prod_{t=1}^{n-1} F(s_t)} \end{aligned}
F(τ)=ZP(τ)=F(s0)t=1∏nPF(st∣st−1)=F(s0)t=1∏nF(st−1)F(st−1→st)=∏t=1n−1F(st)∏t=1nF(st−1→st)
对于式三、四
F
(
τ
)
=
∏
t
=
1
n
F
(
s
t
−
1
→
s
t
)
∏
t
=
1
n
−
1
F
(
s
t
)
=
F
(
s
f
)
∏
t
=
1
n
F
(
s
t
−
1
→
s
t
)
F
(
s
t
)
=
Z
∏
t
=
1
n
P
B
(
s
t
−
1
∣
s
t
)
=
Z
P
(
τ
)
\begin{aligned} F(\tau) &= \frac{\prod_{t=1}^n F(s_{t-1} \rightarrow s_t)}{\prod_{t=1}^{n-1} F(s_t)} \\ &= F(s_f) \prod_{t=1}^n \frac{F(s_{t-1} \rightarrow s_t)}{F(s_{t})} \\ &= Z \prod_{t=1}^n P_B(s_{t-1} | s_t) \\ &= Z P(\tau) \end{aligned}
F(τ)=∏t=1n−1F(st)∏t=1nF(st−1→st)=F(sf)t=1∏nF(st)F(st−1→st)=Zt=1∏nPB(st−1∣st)=ZP(τ)
Corollary 1. 马尔可夫流量取决于总流量和前向转移概率 P F ( s t ∣ s t − 1 ) P_F(s_t | s_{t-1}) PF(st∣st−1) 的结合,或者总流量和反向转移概率 P B ( s t − 1 ∣ s t ) P_B(s_{t-1} | s_t) PB(st−1∣st) 的结合,或者终止流量 F ( s → s f ) F(s \rightarrow s_f) F(s→sf) 和反向转移概率 $P_B(s_{t-1} | s_t) 的结合。
Corollary 2. 对于任意(完整或非完整)轨迹
τ
=
(
s
1
,
…
,
s
n
)
\tau = (s_1, …, s_n)
τ=(s1,…,sn) ,满足
F
(
τ
)
=
F
(
s
1
)
∏
t
=
1
n
−
1
P
F
(
s
t
+
1
∣
s
t
)
F(\tau) = F(s_1) \prod_{t=1}^{n-1} P_F(s_{t+1} | s_t)
F(τ)=F(s1)t=1∏n−1PF(st+1∣st)
流量匹配条件
Def 15. 状态 s s s 的 父节点集( parent set ) 表示为 P a r ( s ) = { s ′ ∈ S : s ′ → s ∈ A } Par(s) = \{ s' \in \mathcal{S}: s' \rightarrow s \in \mathbb{A} \} Par(s)={s′∈S:s′→s∈A} ,子节点集( child set ) 表示为 C h i l d ( s ) = { s ′ ∈ S : s → s ′ ∈ A } Child(s) = \{ s' \in \mathcal{S}: s \rightarrow s' \in \mathbb{A} \} Child(s)={s′∈S:s→s′∈A} 。
Prop 4. 考虑一个非负函数
F
^
\hat{F}
F^ ,输入为状态
s
s
s 或转移
s
→
s
’
s \rightarrow s’
s→s’ ,前向转移概率被估计为
P
^
F
(
s
t
+
1
∣
s
t
)
=
P
^
(
s
t
→
s
t
+
1
∣
s
t
)
=
F
^
(
s
t
→
s
t
+
1
)
F
^
(
s
t
)
\hat{P}_F(s_{t+1} | s_t) = \hat{P}(s_t \rightarrow s_{t+1} | s_t) = \frac{\hat{F}(s_t \rightarrow s_{t+1})}{\hat{F}(s_t)}
P^F(st+1∣st)=P^(st→st+1∣st)=F^(st)F^(st→st+1)
反向转移概率被估计为
P
^
B
(
s
t
∣
s
t
+
1
)
=
P
^
(
s
t
→
s
t
+
1
∣
s
t
+
1
)
=
F
^
(
s
t
→
s
t
+
1
)
F
^
(
s
t
+
1
)
\hat{P}_B(s_t | s_{t+1}) = \hat{P}(s_t \rightarrow s_{t+1} | s_{t+1}) = \frac{\hat{F}(s_t \rightarrow s_{t+1})}{\hat{F}(s_{t+1})}
P^B(st∣st+1)=P^(st→st+1∣st+1)=F^(st+1)F^(st→st+1)
F
^
\hat{F}
F^ 对应的流量必须满足传入和传出任意非源非汇状态的流量相匹配
∀
s
0
<
s
′
<
s
f
,
F
^
(
s
′
)
=
∑
s
∈
P
a
r
(
s
′
)
F
^
(
s
→
s
′
)
=
∑
s
′
′
∈
C
h
i
l
d
(
s
′
)
F
^
(
s
′
→
s
′
′
)
\forall s_0 < s' < s_f, \hat{F}(s') = \sum_{s \in Par(s')} \hat{F}(s \rightarrow s') = \sum_{s'' \in Child(s')} \hat{F}(s' \rightarrow s'')
∀s0<s′<sf,F^(s′)=s∈Par(s′)∑F^(s→s′)=s′′∈Child(s′)∑F^(s′→s′′)
马尔可夫流
F
F
F 在状态和转移上与
F
^
\hat{F}
F^ 相匹配,使得
F
(
τ
)
=
∏
t
=
1
n
F
^
(
s
t
−
1
→
s
t
)
∏
t
=
1
n
−
1
F
^
(
s
t
)
F(\tau) = \frac{\prod_{t=1}^n \hat{F}(s_{t-1} \rightarrow s_t)}{\prod_{t=1}^{n-1} \hat{F}(s_t)}
F(τ)=∏t=1n−1F^(st)∏t=1nF^(st−1→st)
Prop 5. 对于
τ
=
(
s
t
1
,
…
,
s
t
2
)
\tau = (s_{t_1}, …, s_{t_2})
τ=(st1,…,st2)
P
^
(
τ
)
=
P
^
(
s
t
1
)
∏
t
=
t
1
t
2
−
1
P
^
F
(
s
t
+
1
∣
s
t
)
=
P
^
(
s
t
2
)
∏
t
=
t
1
t
2
−
1
P
^
B
(
s
t
∣
s
t
+
1
)
\hat{P}(\tau) = \hat{P}(s_{t_1}) \prod_{t=t_1}^{t_2 - 1} \hat{P}_F(s_{t+1} | s_t) = \hat{P}(s_{t_2}) \prod_{t=t1}^{t_2 - 1} \hat{P}_B(s_t | s_{t+1})
P^(τ)=P^(st1)t=t1∏t2−1P^F(st+1∣st)=P^(st2)t=t1∏t2−1P^B(st∣st+1)
Def 16. 如果存在一个边缘流量函数
F
^
:
A
→
[
0
,
∞
)
\hat{F} : \mathbb{A} \rightarrow [0, \infty)
F^:A→[0,∞)
P
^
F
(
s
′
∣
s
)
=
F
^
(
s
→
s
′
)
∑
s
′
∈
C
h
i
l
d
(
s
)
F
^
(
s
→
s
′
)
P
^
B
(
s
′
∣
s
)
=
F
^
(
s
→
s
′
)
∑
s
∈
P
a
r
(
s
′
)
F
^
(
s
→
s
′
)
\hat{P}_F(s' | s) = \frac{\hat{F}(s \rightarrow s')}{\sum_{s' \in Child(s)} \hat{F}(s \rightarrow s')} \\ \hat{P}_B(s' | s) = \frac{\hat{F}(s \rightarrow s')}{\sum_{s \in Par(s')} \hat{F}(s \rightarrow s')}
P^F(s′∣s)=∑s′∈Child(s)F^(s→s′)F^(s→s′)P^B(s′∣s)=∑s∈Par(s′)F^(s→s′)F^(s→s′)
Def 17. detailed balance 定义如下
∀
s
→
s
′
∈
A
F
^
(
s
)
P
^
F
(
s
′
∣
s
)
=
F
^
(
s
′
)
P
^
B
(
s
∣
s
′
)
\forall s \rightarrow s' \in \mathbb{A} \quad \hat{F}(s) \hat{P}_F(s' | s) = \hat{F}(s') \hat{P}_B(s | s')
∀s→s′∈AF^(s)P^F(s′∣s)=F^(s′)P^B(s∣s′)
Prop 6. 只有当 detailed balance 满足时, F ^ \hat{F} F^ , P ^ B \hat{P}_B P^B 和 P ^ F \hat{P}_F P^F 才能互相对应。