在解决实际问题的时候,需要将数据保存下来,然后根据数据的存储方式来设计算法实现进行处理,那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好,于是我们就需要考虑数据究竟如何保存的问题,这就是数据结构。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。
数据结构指数据对象中数据元素之间的关系。
抽象数据类型(Abstract Data Type)
**抽象数据类型(ADT)**的含义是指一个数学模型以及定义在此数学模型上的一组操作。即把数据类型和数据类型上的运算捆在一起,进行封装。
常用的数据运算有五种:
- 插入
- 删除
- 修改
- 查找
- 排序
顺序表
顺序表的两种基本实现方式:1)一体式结构,2)分离式结构
一体式结构由于顺序表信息区与数据区连续存储在一起,所以若想更换数据区,则只能整体搬迁,即整个顺序表对象(指存储顺序表的结构信息的区域)改变了。
分离式结构若想更换数据区,只需将表信息区中的数据区链接地址更新即可,而该顺序表对象不变。人们把采用这种技术实现的顺序表称为动态顺序表,因为其容量可以在使用中动态变化。
**Python中的顺序表:**Python中的list和tuple两种类型采用了顺序表的实现技术,具有前面讨论的顺序表的所有性质。
在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。这就是为什么用list.append(x) (或 list.insert(len(list), x),即尾部插入)比在指定位置插入元素效率高的原因。
链表
单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
节点代码实现:
class SingleNode(object):
"""单链表的结点"""
def __init__(self,item):
# item存放数据元素
self.item = item
# next是下一个节点的标识
self.next = None
单链表的代码实现:
class SingleLinkList(object):
"""单链表"""
def __init__(self):
self.__head = None
def is_empty(self):
"""判断链表是否为空"""
return self.__head == None
def length(self):
"""链表长度"""
# cur初始时指向头节点
cur = self.__head
count = 0
# 尾节点指向None,当未到达尾部时
while cur != None:
count += 1
# 将cur后移一个节点
cur = cur.next
return count
def travel(self):
"""遍历链表"""
cur = self.__head
while cur != None:
print cur.item,
cur = cur.next
print ""
头部添加元素
def add(self, item):
"""头部添加元素"""
# 先创建一个保存item值的节点
node = SingleNode(item)
# 将新节点的链接域next指向头节点,即_head指向的位置
node.next = self.__head
# 将链表的头_head指向新节点
self.__head = node
指定位置添加元素
def insert(self, pos, item):
"""指定位置添加元素"""
# 若指定位置pos为第一个元素之前,则执行头部插入
if pos <= 0:
self.add(item)
# 若指定位置超过链表尾部,则执行尾部插入
elif pos > (self.length()-1):
self.append(item)
# 找到指定位置
else:
node = SingleNode(item)
count = 0
# pre用来指向指定位置pos的前一个位置pos-1,初始从头节点开始移动到指定位置
pre = self.__head
while count < (pos-1):
count += 1
pre = pre.next
# 先将新节点node的next指向插入位置的节点
node.next = pre.next
# 将插入位置的前一个节点的next指向新节点
pre.next = node
总结要点就是:必须将新节点创建保存好后再动原节点.
双向链表:每个节点有两个链接:一个指向前一个节点,当此节点为第一个节点时,指向空值;而另一个指向下一个节点,当此节点为最后一个节点时,指向空值。
class Node(object):
"""双向链表节点"""
def __init__(self, item):
self.item = item
self.next = None
self.prev = None
class DLinkList(object):
"""双向链表"""
def __init__(self):
self.__head = None
def is_empty(self):
"""判断链表是否为空"""
return self.__head == None
def length(self):
"""返回链表的长度"""
cur = self.__head
count = 0
while cur != None:
count += 1
cur = cur.next
return count
def travel(self):
"""遍历链表"""
cur = self.__head
while cur != None:
print cur.item,
cur = cur.next
print ""
def add(self, item):
"""头部插入元素"""
node = Node(item)
if self.is_empty():
# 如果是空链表,将_head指向node
self.__head = node
else:
# 将node的next指向_head的头节点
node.next = self.__head
# 将_head的头节点的prev指向node
self.__head.prev = node
# 将_head 指向node
self.__head = node
def append(self, item):
"""尾部插入元素"""
node = Node(item)
if self.is_empty():
# 如果是空链表,将_head指向node
self.__head = node
else:
# 移动到链表尾部
cur = self.__head
while cur.next != None:
cur = cur.next
# 将尾节点cur的next指向node
cur.next = node
# 将node的prev指向cur
node.prev = cur
def search(self, item):
"""查找元素是否存在"""
cur = self.__head
while cur != None:
if cur.item == item:
return True
cur = cur.next
return False