一、创建Maven项目
1.1 配置Maevn文件
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 该插件用于将 Scala 代码编译成 class 文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<!-- 声明绑定到 maven 的 compile 阶段 -->
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
配置scala
创建wordcount1使用gorup by和map的模式匹配
package com.longer.core.wc
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* 传统Scala的wordl count
*/
object Spark01_WordCount {
def main(args: Array[String]): Unit = {
// Application
// Spark框架
//TODO 建立和Spark框架的链接
//JDBC:Connection
val sparkConf = new SparkConf().setMaster("local").setAppName("WordCount")
val sc = new SparkContext(sparkConf)
//TODO 执行业务操作
//1、读取文件,获取一行一行的数据
//hello world
val lines: RDD[String] = sc.textFile("datas")
//将督导的数据进行扁平化处理
val newLines: RDD[String] = lines.flatMap(_.split(" "))
//分组
val wordsGroup: RDD[(String, Iterable[String])] = newLines.groupBy(word => word)
//统计
val wordCount:RDD[(String,Int)] = wordsGroup.map {
case (word, list) => (word, list.size)
}
//获取统计结果 触发执行操作
val array: Array[(String, Int)] = wordCount.collect()
array.foreach(println)
//TODO 关闭链接
sc.stop()
}
}
WordCount2使用reduceByKey实现
package com.atguigu.bigdata.spark.core.wc
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Spark02_WordCount1 {
def main(args: Array[String]): Unit = {
// Application
// Spark框架
// TODO 建立和Spark框架的连接
// JDBC : Connection
val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
val sc = new SparkContext(sparConf)
// TODO 执行业务操作
// 1. 读取文件,获取一行一行的数据
// hello world
val lines: RDD[String] = sc.textFile("datas")
// 2. 将一行数据进行拆分,形成一个一个的单词(分词)
// 扁平化:将整体拆分成个体的操作
// "hello world" => hello, world, hello, world
val words: RDD[String] = lines.flatMap(_.split(" "))
// 3. 将单词进行结构的转换,方便统计
// word => (word, 1)
val wordToOne = words.map(word=>(word,1))
// 4. 将转换后的数据进行分组聚合
// 相同key的value进行聚合操作
// (word, 1) => (word, sum)
val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_)
// 5. 将转换结果采集到控制台打印出来
val array: Array[(String, Int)] = wordToSum.collect()
array.foreach(println)
// TODO 关闭连接
sc.stop()
}
}
配置因为打印会有很多日志文件,所以 配置log4j去除日志
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
配置后没生效,clean以下项目
配置前
配置后