代码与注释如下
import pandas as pd
import numpy as np
dates = pd.date_range('20191218', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)), index=dates, columns=['A', 'B', 'C', 'D'])
print(df)
df.iloc[2, 2] = 1111 # 改变第二列第二行的值为1111
df.loc['20191218', 'B'] = 2222 # 横向标签是20191218,纵向标签是B的值设为2222
df[df.A>4] = 0 #
# A B C D
# 2019-12-18 0 2222 2 3
# 2019-12-19 4 5 6 7
# 2019-12-20 0 0 0 0
# 2019-12-21 0 0 0 0
# 2019-12-22 0 0 0 0
# 2019-12-23 0 0 0 0
df.A[df.A>4] = 0 #
# A B C D
# 2019-12-18 0 2222 2 3
# 2019-12-19 4 5 6 7
# 2019-12-20 0 9 1111 11
# 2019-12-21 0 13 14 15
# 2019-12-22 0 17 18 19
# 2019-12-23 0 21 22 23
# 加入空列F
df['F'] = np.nan
# A B C D F
# 2019-12-18 0 2222 2 3 NaN
# 2019-12-19 4 5 6 7 NaN
# 2019-12-20 0 0 0 0 NaN
# 2019-12-21 0 0 0 0 NaN
# 2019-12-22 0 0 0 0 NaN
# 2019-12-23 0 0 0 0 NaN
# 加入列E
df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20191218', periods=6))
print(df)
# A B C D F E
# 2019-12-18 0 2222 2 3 NaN 1
# 2019-12-19 4 5 6 7 NaN 2
# 2019-12-20 0 0 0 0 NaN 3
# 2019-12-21 0 0 0 0 NaN 4
# 2019-12-22 0 0 0 0 NaN 5
# 2019-12-23 0 0 0 0 NaN 6
导入导出部分
# pandas能读取、保存csv excel hdf sql json masgpack html gbq stata sas cilpboard pickle等格式
# 读取使用.read_格式名,例如.read_csv()
data = pd.read_csv('student.csv')
print(data)
data.to_pickle('student.pickle')
# 导入使用.to_格式名,例如.to_pickle()