2.1数据操作
为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。
首先,我们介绍
维数组,也称为张量(tensor)。 使用过Python中NumPy计算包的读者会对本部分很熟悉。 无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray, 在PyTorch和TensorFlow中为Tensor)都与Numpy的ndarray类似。 但深度学习框架又比Numpy的ndarray多一些重要功能: 首先,GPU很好地支持加速计算,而NumPy仅支持CPU计算; 其次,张量类支持自动微分。 这些功能使得张量类更适合深度学习。 如果没有特殊说明,本书中所说的张量均指的是张量类的实例。
2.1.1入门
本节的目标是帮助读者了解并运行一些在阅读本书的过程中会用到的基本数值计算工具。 如果你很难理解一些数学概念或库函数,请不要担心。 后面的章节将通过一些实际的例子来回顾这些内容。 如果你已经具有相关经验,想要深入学习数学内容,可以跳过本节。
// 首先,我们导入torch。请注意,虽然它被称为PyTorch,但是代码中使用torch而不是pytorch。
import torch
// 首先,我们可以使用 arange 创建一个行向量 x。这个行向量包含以0开始的前12个整数,它们默认创建为整数。也可指定创建类型为浮点数。张量中的每个值都称为张量的 元素(element)。例如,张量 x 中有 12 个元素。除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。
x = torch.arange(12)
x
可以通过张量的shape属性来访问张量(沿每个轴的长度)的形状 。
tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
可以通过张量的shape属性来访问张量(沿每个轴的长度)的形状 。
x.shape
如果只想知道张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)。 因为这里在处理的是一个向量,所以它的shape与它的size相同。
x.numel()
要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。 例如,可以把张量x从形状为(12,)的行向量转换为形状为(3,4)的矩阵。 这个新的张量包含与转换前相同的值,但是它被看成一个3行4列的矩阵。 要重点说明一下,虽然张量的形状发生了改变,但其元素值并没有变。 注意,通过改变张量的形状,张量的大小不会改变。
torch.zeros((2, 3, 4))
tensor([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
同样,我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为1。代码如下:
torch.ones((2, 3, 4))
tensor([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1.