Tensorflow实战卷积神经网络(一)
一、环境需要
tensorflow-CPU版本
jupyter
python3
MNIST_data(MNIST数据集)
二、卷积神经网络的结构
Mnist数据集中,每一张图片都是(28,28,1),即图片的宽高都是28,通道数为1,代表这是灰度图片。我们将要讲解并实现一个系列的教程,用不同的API来搭建卷积神经网络,今天我们来进入第一种搭建的方法----自定义卷积核池化函数,然后调用函数完成网络的搭建。
输入的图像是(28,28,1)
第一个卷积层:16个55的卷积核
输出:141416
第二个卷积层:36个55的卷积核
输出:7736
resize操作:送入全连接之前将图片展平成(None,7736)
第一个全连接层:128
第二个全连接层:10
三、数据集的导入与可视化
1.1导入相应的模块
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from sklearn.metrics import confusion_matrix
import time
from datetime import timedelta
import math
1.2 导入数据集
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets(r'C:\Users\满森\项目\deep_learning\MNIST_data/', one_hot=True)
1.3 设置图片的大小尺寸
# The number of pixels in each dimension of an image.
img_size = 28
# The images are stored in one-dimensional arrays of this length.
img_size_flat = 28*28
# Tuple with height and width of images used to reshape arrays.
img_shape = (28,28)
# Number of classes, one class for each of 10 digits.
num_classes = 10
# Number of colour channels for the images: 1 channel for gray-scale.
num_channels = 1
1.4 定义函数,绘制图片
def plot_images(images, cls_true, cls_pred=None):
assert len(images) == len(cls_true) == 9
# Create figure with 3x3 sub-plots.
fig, axes = plt.subplots(3, 3)
fig.subplots_adjust(hspace=0.3, wspace=0.3)
for i, ax in enumerate(axes.flat):
# Plot image.
ax.imshow(images[i].reshape(img_shape), cmap='binary')
# Show true and predicted classes.
if cls_pred is None:
xlabel = "True: {0}".format(cls_true[i])
else:
xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i])
# Show the classes as the label on the x-axis.
ax.set_xlabel(xlabel)
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()
1.5 绘制几张图片
# Get the first images from the test-set.
images = data.train.images[0:9]
# Get the true classes for those images.
cls_true = np.argmax(data.test.labels[0:9],axis=1)
# Plot the images and labels using our helper-function above.
plot_images(images=images, cls_true=cls_true)
四、网络搭建的辅助函数
1.1 定义帮助函数
(1)权重初始化
def new_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
(2)偏置初始化
def new_biases(length):
return tf.Variable(tf.constant(0.05, shape=[length]))
(3)定义卷积操作
def new_conv_layer(input, # The previous layer.
num_input_channels, # Num. channels in prev. layer.
filter_size, # Width and height of each filter.
num_filters, # Number of filters.
use_pooling=True): # Use 2x2 max-pooling.
shape = [filter_size, filter_size, num_input_channels, num_filters]
weights = new_weights(shape=shape)
biases = new_biases(length=num_filters)
layer = tf.nn.conv2d(input=input,
filter=weights,
strides=[1, 1, 1, 1],
padding='SAME')
layer += biases
# 判断是否使用池化,池化核2*2,步长2
# 池化之后图像尺寸变小
if use_pooling:
layer = tf.nn.max_pool(value=layer,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# 池化之后送给非线性
layer = tf.nn.relu(layer)
# 返回非线性输出和权重
return layer, weights
(4)送入全连接层之前将向量展平
def flatten_layer(layer):
# Get the shape of the input layer.
layer_shape = layer.get_shape()
num_features = layer_shape[1:4].num_elements()
layer_flat = tf.reshape(layer, [-1, num_features])
return layer_flat, num_features
(5)定义全连接操作
def new_fc_layer(input, # The previous layer.
num_inputs, # Num. inputs from prev. layer.
num_outputs, # Num. outputs.
use_relu=True): # Use Rectified Linear Unit (ReLU)?
# Create new weights and biases.
weights = new_weights(shape=[num_inputs, num_outputs])
biases = new_biases(length=num_outputs)
# Calculate the layer as the matrix multiplication of
# the input and weights, and then add the bias-values.
layer = tf.matmul(input, weights) + biases
# Use ReLU?
if use_relu:
layer = tf.nn.relu(layer)
return layer
五、搭建卷积神经网络
(1)设置占位符
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
y_true_cls = tf.argmax(y_true, axis=1)
(2)第一个卷积层
layer_conv1, weights_conv1 = \
new_conv_layer(input=x_image,
num_input_channels=num_channels,
filter_size=filter_size1,
num_filters=num_filters1,
use_pooling=True)
(3)第二个卷积层
layer_conv2, weights_conv2 = \
new_conv_layer(input=layer_conv1,
num_input_channels=num_filters1,
filter_size=filter_size2,
num_filters=num_filters2,
use_pooling=True)
(4)第一个全连接层
## 首先将向量展平
layer_flat, num_features = flatten_layer(layer_conv2)
## 然后送入全连接层
layer_fc1 = new_fc_layer(input=layer_flat,
num_inputs=num_features,
num_outputs=fc_size,
use_relu=True)
(5)第二个全连接层
layer_fc2 = new_fc_layer(input=layer_fc1,
num_inputs=fc_size,
num_outputs=num_classes,
use_relu=False)
(6)损失函数与优化
# 将输出层送入softmax,结果是预测的十个标签对应的得分(0-1)
y_pred = tf.nn.softmax(layer_fc2)
# 每一行求argmax,得到其正确分类
y_pred_cls = tf.argmax(y_pred, axis=1)
# 交叉熵损失函数
cross_entropy =tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,
labels=y_true)
# 求均值之后即为损失函数
cost = tf.reduce_mean(cross_entropy)
# 定义优化器,优化损失函数
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
# 得到正确率,即预测标签和正确标签作对比
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
(7)开启会话,全局初始化
经过上面的过程,我们的卷积神经网络已将搭建成功。但是我们没有喂入数据,在进行这些操作之前,我们要开启会话,这和Tensorflow 的运行机制有关,记住一切的计算都要在会话中进行。
session = tf.Session()
session.run(tf.global_variables_initializer())
六、进行优化,结果展示辅助函数
(1)定义优化器
我们按照一个batch 进行训练,这样可以加快速度,每一轮训练64张图片
train_batch_size = 64
total_iterations = 0
def optimize(num_iterations):
# Ensure we update the global variable rather than a local copy.
global total_iterations
# Start-time used for printing time-usage below.
start_time = time.time()
for i in range(total_iterations,
total_iterations + num_iterations):
# Get a batch of training examples.
# x_batch now holds a batch of images and
# y_true_batch are the true labels for those images.
x_batch, y_true_batch = data.train.next_batch(train_batch_size)
# Put the batch into a dict with the proper names
# for placeholder variables in the TensorFlow graph.
feed_dict_train = {x: x_batch,
y_true: y_true_batch}
# Run the optimizer using this batch of training data.
# TensorFlow assigns the variables in feed_dict_train
# to the placeholder variables and then runs the optimizer.
session.run(optimizer, feed_dict=feed_dict_train)
# Print status every 100 iterations.
if i % 100 == 0:
# Calculate the accuracy on the training-set.
acc = session.run(accuracy, feed_dict=feed_dict_train)
# Message for printing.
msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}"
# Print it.
print(msg.format(i + 1, acc))
# Update the total number of iterations performed.
total_iterations += num_iterations
# Ending time.
end_time = time.time()
# Difference between start and end-times.
time_dif = end_time - start_time
# Print the time-usage.
print("Time usage: " + str(timedelta(seconds=int(round(time_dif)))))
(2)绘制错误图片
cls_true = data.test.labels
cls_true = np.argmax(cls_true,axis = 1)
这两句话的意思是我们得到标签确切的分类
def plot_example_errors(cls_pred, correct):
incorrect = (correct == False)
# 找到错误图片
images = data.test.images[incorrect].
# 得到错误分类标签
cls_pred = cls_pred[incorrect]
# 得到真实标签
cls_true = data.test.labels
cls_true = np.argmax(cls_true,axis = 1)
cls_true = cls_true[incorrect]
# Plot the first 9 images.
plot_images(images=images[0:9],
cls_true=cls_true[0:9],
cls_pred=cls_pred[0:9])
(3)绘制混淆矩阵
def plot_confusion_matrix(cls_pred):
# This is called from print_test_accuracy() below.
cls_true = data.test.labels
cls_true = np.argmax(cls_true,axis = 1)
# Get the confusion matrix using sklearn.
cm = confusion_matrix(y_true=cls_true,
y_pred=cls_pred)
# Print the confusion matrix as text.
print(cm)
# Plot the confusion matrix as an image.
plt.matshow(cm)
# Make various adjustments to the plot.
plt.colorbar()
tick_marks = np.arange(num_classes)
plt.xticks(tick_marks, range(num_classes))
plt.yticks(tick_marks, range(num_classes))
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
(4)定义函数,打印测试集准确率
# Split the test-set into smaller batches of this size.
test_batch_size = 256
def print_test_accuracy(show_example_errors=False,
show_confusion_matrix=False):
num_test = len(data.test.images)
cls_pred = np.zeros(shape=num_test, dtype=np.int)
i = 0
while i < num_test:
# The ending index for the next batch is denoted j.
j = min(i + test_batch_size, num_test)
# Get the images from the test-set between index i and j.
images = data.test.images[i:j, :]
# Get the associated labels.
labels = data.test.labels[i:j, :]
# Create a feed-dict with these images and labels.
feed_dict = {x: images,
y_true: labels}
# Calculate the predicted class using TensorFlow.
cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch.
i = j
cls_true = data.test.labels
cls_true = np.argmax(cls_true,axis=1)
correct = np.float32((cls_true == cls_pred))
correct_sum = correct.sum()
acc = float(correct_sum) / num_test
# Print the accuracy.
msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})"
print(msg.format(acc, correct_sum, num_test))
# Plot some examples of mis-classifications, if desired.
if show_example_errors:
print("Example errors:")
plot_example_errors(cls_pred=cls_pred, correct=correct)
# Plot the confusion matrix, if desired.
if show_confusion_matrix:
print("Confusion Matrix:")
plot_confusion_matrix(cls_pred=cls_pred)
七、结果显示
(1)优化1000次
optimize(num_iterations=900) # We performed 100 iterations above.
Optimization Iteration: 201, Training Accuracy: 81.2%
Optimization Iteration: 301, Training Accuracy: 87.5%
Optimization Iteration: 401, Training Accuracy: 87.5%
Optimization Iteration: 501, Training Accuracy: 96.9%
Optimization Iteration: 601, Training Accuracy: 87.5%
Optimization Iteration: 701, Training Accuracy: 95.3%
Optimization Iteration: 801, Training Accuracy: 90.6%
Optimization Iteration: 901, Training Accuracy: 93.8%
Optimization Iteration: 1001, Training Accuracy: 96.9%
Time usage: 0:00:40
(2)打印结果并展示混淆矩阵
print_test_accuracy(show_confusion_matrix=True)
Accuracy on Test-Set: 93.4% (9341.0 / 10000)
Confusion Matrix:
[[ 968 0 0 1 0 1 5 1 4 0]
[ 0 1105 4 3 1 1 4 0 17 0]
[ 10 1 945 17 11 0 9 13 25 1]
[ 2 3 9 949 0 10 1 11 19 6]
[ 1 1 6 1 921 0 11 5 3 33]
[ 12 2 3 33 8 791 17 1 21 4]
[ 12 3 3 1 10 13 912 1 3 0]
[ 0 5 28 4 5 0 0 947 5 34]
[ 9 0 6 26 10 15 5 12 883 8]
[ 9 5 7 12 25 4 0 19 8 920]]
八,卷积输出可视化
(1)绘制帮助函数
def plot_conv_layer(layer, image):
feed_dict = {x: [image]}
values = session.run(layer, feed_dict=feed_dict)
num_filters = values.shape[3]
num_grids = math.ceil(math.sqrt(num_filters))
# Create figure with a grid of sub-plots.
fig, axes = plt.subplots(num_grids, num_grids)
# Plot the output images of all the filters.
for i, ax in enumerate(axes.flat):
# Only plot the images for valid filters.
if i<num_filters:
img = values[0, :, :, i]
# Plot image.
ax.imshow(img, interpolation='nearest', cmap='binary')
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
plt.show()
(2)绘制图片
image1 = data.test.images[0]
plot_conv_layer(layer=layer_conv1, image=image1)
plot_conv_layer(layer=layer_conv2, image=image1)