import paddle.fluid as fluid
import paddle
import numpy as np
import os
import matplotlib.pyplot as plt
BUF_SIZE=500
BATCH_SIZE=20
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.uci_housing.train(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.uci_housing.test(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
train_data=paddle.dataset.uci_housing.train();
sampledata=next(train_data())
print(sampledata)
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict=fluid.layers.fc(input=x,size=1,act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
test_program = fluid.default_main_program().clone(for_test=True)
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
iter=0;
iters=[]
train_costs=[]
EPOCH_NUM=50
model_save_dir = "/home/aistudio/work/fit_a_line.inference.model"
for pass_id in range(EPOCH_NUM):
train_cost = 0
for batch_id, data in enumerate(train_reader()):
train_cost = exe.run(program=fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if batch_id % 40 == 0:
print("Pass:%d, Cost:%0.5f" % (pass_id, train_cost[0][0]))
iter=iter+BATCH_SIZE
iters.append(iter)
train_costs.append(train_cost[0][0])
test_cost = 0
for batch_id, data in enumerate(test_reader()):
test_cost= exe.run(program=test_program,
feed=feeder.feed(data),
fetch_list=[avg_cost])
print('Test:%d, Cost:%0.5f' % (pass_id, test_cost[0][0]))
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
print ('save models to %s' % (model_save_dir))
fluid.io.save_inference_model(model_save_dir,
['x'],
[y_predict],
exe)
def draw_train_process(iters,train_costs):
title="training cost"
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("cost", fontsize=14)
plt.plot(iters, train_costs,color='red',label='training cost')
plt.grid()
plt.show()
draw_train_process(iters,train_costs)
infer_exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
infer_results=[]
groud_truths=[]
def draw_infer_result(groud_truths,infer_results):
title='Boston'
plt.title(title, fontsize=24)
x = np.arange(1,20)
y = x
plt.plot(x, y)
plt.xlabel('ground truth', fontsize=14)
plt.ylabel('infer result', fontsize=14)
plt.scatter(groud_truths, infer_results,color='green',label='training cost')
plt.grid()
plt.show()
with fluid.scope_guard(inference_scope):
[inference_program,
feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
model_save_dir,
infer_exe)
infer_reader = paddle.batch(paddle.dataset.uci_housing.test(),
batch_size=200)
test_data = next(infer_reader())
test_x = np.array([data[0] for data in test_data]).astype("float32")
test_y= np.array([data[1] for data in test_data]).astype("float32")
results = infer_exe.run(inference_program,
feed={feed_target_names[0]: np.array(test_x)},
fetch_list=fetch_targets)
print("infer results: (House Price)")
for idx, val in enumerate(results[0]):
print("%d: %.2f" % (idx, val))
infer_results.append(val)
print("ground truth:")
for idx, val in enumerate(test_y):
print("%d: %.2f" % (idx, val))
groud_truths.append(val)
draw_infer_result(groud_truths,infer_results)