大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」
聚类分析概述
聚类分析的定义与意义
聚类分析(Clustering Analysis)是一种将数据对象分成多个簇(Cluster)的技术,使得同一簇内的对象具有较高的相似性,而不同簇之间的对象具有较大的差异性。这种方法在无监督学习(Unsupervised Learning)中广泛应用,常用于数据预处理、模式识别、图像处理和市场分析等领域
通过聚类分析,可以有效地发现数据中的结构和模式,为进一步的数据分析和挖掘提供基础。例如,在市场分析中,聚类分析可以帮助企业将客户群体进行细分,从而制定更有针对性的营销策略
常见聚类算法概览
聚类算法种类繁多,常见的主要有以下几种:
- K-均值(K-Means):一种基于划分的聚类方法,通过迭代优化目标函数将数据分为K个簇。它具有计算简单、效率高等优点,但对初始值敏感,容易陷入局部最优
- 层次聚类(Hierarchical Clustering):一种基于层次结构的聚类方法,包括凝聚式和分裂式两种。凝聚式层次聚类从每个对象开始逐步合并,分裂式层次聚类从整个数据集开始逐步分裂。它可以生成树状结构(树状图),但计算复杂度较高
- DBSCAN(Density-Based Spatial Clustering of Applications with Noise):一种基于密度的聚类方法,通过定义核心点、边界点和噪声点来识别簇。它能有效处理噪声和发现任意形状的簇,但对参数选择较为敏感
聚类分析在数据科学中的应用
聚类分析在数据科学中有广泛的应用,以下是一些典型场景:
- 客户细分:通过对客户进行聚类分析,企业可以将客户分成不同的群体,从而制定更加精准的营销策略
- 图像分割:在图像处理领域,聚类分析可以用于图像分割,