ZK管理kafka偏移量

import java.lang
import kafka.utils.{ZKGroupTopicDirs, ZkUtils}
import org.I0Itec.zkclient.ZkClient
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext, kafka010}
import scala.collection.mutable._

//ZK管理偏移量
object SSCDirectKafka010_ZK_Offset {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setMaster("local[*]").setAppName("SSCDirectKafka010_ZK_Offset")

    //配置在kafka中每次拉取的数据量,这里配置的2并不是每次在kafka拉取2条数据,而是:2*分区数量*采样时间(12)
    conf.set("spark.streaming.kafka.maxRatePerPartition", "2")
    //是否优雅的停止你的SparkStreaming,如果不加这个参数的话,服务停止的时候可能会造成数据的丢失
    conf.set("spark.streaming.stopGracefullyOnShutdown", "true")

    val ssc = new StreamingContext(conf,Seconds(2))

    //消费者ID
    val groupId = "day11_08"

    //配置消费者参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop01:9092,hadoop02:9092,hadoop03:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupId,
      //从头的数据开始消费earliest
      "auto.offset.reset" -> "earliest",
      //是否自动提交偏移量
      "enable.auto.commit" -> (false: lang.Boolean)
    )

    val topic = "helloTopic"
    val topics = Array(topic)

    val zkTopicDirs: ZKGroupTopicDirs = new ZKGroupTopicDirs(groupId,topic)

    //ZK储存offset的目录
    val offsetDir: String = zkTopicDirs.consumerOffsetDir

    //创建一个zkClient的客户端连接
    val zkClient = new ZkClient("hadoop01:2181,hadoop02:2181,hadoop01:2183")

    //获取子目录下的文件数量
    val childrenCount = zkClient.countChildren(offsetDir)

    //如果有文件就读去偏移量
    val result = if(childrenCount > 0){
      val offsetResult = Map[TopicPartition,Long]()
      (0 until childrenCount).foreach(f = part => {
        val offset: String = zkClient.readData[String](offsetDir + s"/${part}")
        offsetResult += (new TopicPartition(topic, part) -> offset.toLong)
      })

      KafkaUtils.createDirectStream[String,String](
        ssc,
        LocationStrategies.PreferConsistent,
        ConsumerStrategies.Subscribe[String,String](topics,kafkaParams,offsetResult)
      )
      //没用则从头开始读
    }else{
      KafkaUtils.createDirectStream[String,String](
        ssc,
        LocationStrategies.PreferConsistent,
        ConsumerStrategies.Subscribe[String,String](topics,kafkaParams)
      )
    }

    result.foreachRDD(rdd=>{
      val ranges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges

      for (i <- ranges){
        println(i.topic+"-"+i.partition+"-"+i.untilOffset+"-"+topic)
        //将偏移量写入zookeeper上
        ZkUtils(zkClient,false).updateEphemeralPath(offsetDir+"/"+i.partition,i.untilOffset.toString)
      }
    })

    ssc.start()

    ssc.awaitTermination()
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值