XGBoost,这是一种高效且广泛使用的梯度提升框架。XGBoost(Extreme Gradient Boosting)在多种数据集上都表现出色,特别适合处理复杂的非线性关系。
(随机森林回归模型来预测搜索量,效果稀烂。在大佬推荐下,尝试XGBoost模型)
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# 加载数据
file_path = '您的文件路径.csv' # 请替换成您的文件路径
df = pd.read_csv(file_path, encoding='GB18030')
# 选择特征和目标变量
feature_cols = ['关键词销量', '转化率', 'Cerebro IQ 得分']
target_col = '搜索量'
# 数据预处理:转换非数值型特征和处理缺失值
df[feature_cols] = df[feature_cols].apply(pd.to_numeric, errors='coerce')
df = df.dropna(subset=feature_cols + [target_col])
# 划分特征和目标变量
X = df[feature_cols]
y = df[target_col]
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建 XGBoost 模型
xg_reg = xgb.XGBRegressor(objective ='reg:squarederror', colsample_bytree = 0.3, learning_rate = 0.1,
max_dept