第5章 深度学习用于计算机视觉
本章包括以下内容:
理解卷积神经网络(convnet)
使用数据增强来降低过拟合
使用预训练的卷积神经网络进行特征提取
微调预训练的卷积神经网络
将卷积神经网络学到的内容及其如何做出分类决策可视化
本章将介绍卷积神经网络,也叫 convnet,它是计算机视觉应用几乎都在使用的一种深度 学习模型。你将学到将卷积神经网络应用于图像分类问题,特别是那些训练数据集较小的问题。 如果你工作的地方并非大型科技公司,这也将是你最常见的使用场景。
5.1 卷积神经网络简介
我们将深入讲解卷积神经网络的原理,以及它在计算机视觉任务上为什么如此成功。但在此之前,我们先来看一个简单的卷积神经网络示例,即使用卷积神经网络对 MNIST 数字进行分类,这个任务我们在第 2 章用密集连接网络做过(当时的测试精度为 97.8%)。虽然本例中的卷积神经网络很简单,但其精度肯定会超过第 2 章的密集连接网络。
下列代码将会展示一个简单的卷积神经网络。它是 Conv2D 层和 MaxPooling2D 层的堆叠。 很快你就会知道这些层的作用。
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
print(model.summary())
重要的是,卷积神经网络接收形状为 (image_height, image_width, image_channels) 的输入张量(不包括批量维度)。本例中设置卷积神经网络处理大小为 (28, 28, 1) 的输入张量, 这正是 MNIST 图像的格式。我们向第一层传入参数 input_shape=(28, 28, 1) 来完成此设置。 我们来看一下目前卷积神经网络的架构。
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2 (None, 13, 13, 32) 0
D)
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_1 (MaxPoolin (None, 5, 5, 64) 0
g2D)
conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
=================================================================
Total params: 55744 (217.75 KB)
Trainable params: 55744 (217.75 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
None
可以看到,每个 Conv2D 层和 MaxPooling2D 层的输出都是一个形状为 (height, width, channels) 的 3D 张量。宽度和高度两个维度的尺寸通常会随着网络加深而变小。通道数量由传 入 Conv2D 层的第一个参数所控制(32 或 64)。
下一步是将最后的输出张量[大小为 (3, 3, 64)]输入到一个密集连接分类器网络中, 即 Dense 层的堆叠,你已经很熟悉了。这些分类器可以处理 1D 向量,而当前的输出是 3D 张量。 首先,我们需要将 3D 输出展平为 1D,然后在上面添加几个 Dense 层。
# 代码清单 5-2 在卷积神经网络上添加分类器
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
我们将进行 10 类别分类,最后一层使用带 10 个输出的 softmax 激活。现在网络的架构如下。
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2 (None, 13, 13, 32) 0
D)
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_1 (MaxPoolin (None, 5, 5, 64) 0
g2D)
conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
flatten (Flatten) (None, 576) 0
dense (Dense) (None, 64) 36928
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 93322 (364.54 KB)
Trainable params: 93322 (364.54 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
如你所见,在进入两个 Dense 层之前,形状 (3, 3, 64) 的输出被展平为形状 (576,) 的向量。
# 代码清单 5-3 在 MNIST 图像上训练卷积神经网络
from keras.datasets import mnist
from keras.utils import to_categorical
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=64)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('test_acc:',test_acc)
938/938 [==============================] - 15s 16ms/step - loss: 0.0198 - accuracy: 0.9940
313/313 [==============================] - 2s 5ms/step - loss: 0.0272 - accuracy: 0.9909
test_acc: 0.9908999800682068
5.1.1 卷积运算

