文章目录
Typed JavaScript at Any Scale.
添加了类型系统的 JavaScript,适用于任何规模的项目。-------以上描述是官网对于 TypeScript 的定义。
TypeScript 是一门静态类型、弱类型的语言。
TypeScript 是完全兼容 JavaScript 的,它不会修改 JavaScript 运行时的特性。
TypeScript 可以编译为 JavaScript,然后运行在浏览器、Node.js 等任何能运行 JavaScript 的环境中。
一、 接口 (interface)
1. 什么是接口
在 TypeScript 中接口(Interface)主要有两个作用:
- 使用接口(Interface)来定义对象的类型。
- 使用接口(Interface)对行为进行抽象,而具体如何行动需要由类(class)去实现(implements)。
// 使用接口(Interface)来定义对象的类型
interface Person {
name: string;
age: number;
}
let tom: Person = {
name: 'Tom',
age: 25
};
赋值的时候,变量的形状必须和接口的形状保持一致
// 使用接口(Interface)对行为进行抽象
interface Alarm {
alert(): void;
}
class Door {
}
class SecurityDoor extends Door implements Alarm {
alert() {
console.log('SecurityDoor alert');
}
}
class Car implements Alarm {
alert() {
console.log('Car alert');
}
}
2. 可选属性
有时我们希望不要完全匹配一个接口的形状,那么可以用可选属性(可选属性的含义是该属性可以不存在):
interface Person {
name: string;
age?: number; // 可选属性
}
let tom: Person = {
name: 'Tom'
};
此时仍然不允许添加未定义的属性。
3. 任意属性
有时候我们希望一个接口允许有任意的属性,可以使用如下方式:
interface Person {
name: string;
age?: number; // 可选属性
[propName: string]: any; // 任意属性
}
let tom: Person = {
name: 'Tom',
gender: 'male'
};
使用 [propName: string] 定义了任意属性取 string 类型的值。
需要注意的是,一旦定义了任意属性,那么确定属性和可选属性的类型都必须是它的类型的子集,并且
一个接口中只能定义一个任意属性。如果接口中有多个类型的属性,则可以在任意属性中使用联合类型:
interface Person {
name: string;
age?: number;
[propName: string]: string | number;
}
let tom: Person = {
name: 'Tom',
age: 25,
gender: 'male'
};
4. 只读属性
有时候我们希望对象中的一些字段只能在创建的时候被赋值,那么可以用 readonly 定义只读属性:
interface Person {
readonly id: number;
name: string;
age?: number;
[propName: string]: any;
}
let tom: Person = {
id: 89757,
name: 'Tom',
gender: 'male'
};
tom.id = 9527;
// index.ts(14,5): error TS2540: Cannot assign to 'id' because it is a constant or a read-only property.
上例中,使用 readonly 定义的属性 id 初始化后,又被赋值了,所以报错了。
注意,只读的约束存在于第一次给对象赋值的时候,而不是第一次给只读属性赋值的时候
二、类(class)
传统方法中,JavaScript 通过构造函数实现类的概念,通过原型链实现继承。而在 ES6 中,我们终于迎来了 class。TypeScript 除了实现了所有 ES6 中的类的功能以外,还添加了一些新的用法。
这里先对类相关的概念做一个简单的介绍:
-
类(Class):定义了一件事物的抽象特点,包含它的属性和方法
-
对象(Object):类的实例,通过 new 生成
-
面向对象(OOP)的三大特性:封装、继承、多态
- 封装(Encapsulation):将对数据的操作细节隐藏起来,只暴露对外的接口。外界调用端不需要(也不可能)知道细节,就能通过对外提供的接口来访问该对象,同时也保证了外界无法任意更改对象内部的数据
- 继承(Inheritance):子类继承父类,子类除了拥有父类的所有特性外,还有一些更具体的特性
- 多态(Polymorphism):由继承而产生了相关的不同的类,对同一个方法可以有不同的响应。比如 Cat 和 Dog 都继承自 Animal,但是分别实现了自己的 eat 方法。此时针对某一个实例,我们无需了解它是 Cat 还是 Dog,就可以直接调用 eat 方法,程序会自动判断出来应该如何执行 eat
-
存取器(getter & setter):用以改变属性的读取和赋值行为
-
修饰符(Modifier):修饰符是一些关键字,用于限定成员或类型的性质。比如 public 表示公有属性或方法
-
抽象类(Abstract Class):抽象类是供其他类继承的基类,抽象类不允许被实例化。抽象类中的抽象方法必须在子类中被实现
-
接口(Interface):不同类之间公有的属性或方法,可以抽象成一个接口。接口可以被类实现(implements)。一个类只能继承自另一个类,但是可以实现多个接口
1. 什么是类
类(Class):定义了一件事物的抽象特点,包含它的属性和方法。
2. ES6 中类的用法
2.1 属性和方法
使用 class
定义类,使用 constructor
定义构造函数。
通过 new
生成新实例的时候,会自动调用构造函数。
class Animal {
name;
constructor(name) {
this.name = name;
}
sayHi() {
return `My name is ${this.name}`;
}
}
let a = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack
2.2 类的继承
使用 extends
关键字实现继承,子类中使用 super
关键字来调用父类的构造函数和方法。
class Cat extends Animal {
constructor(name) {
super(name); // 调用父类的 constructor(name)
console.log(this.name);
}
sayHi() {
return 'Meow, ' + super.sayHi(); // 调用父类的 sayHi()
}
}
let c = new Cat('Tom'); // Tom
console.log(c.sayHi()); // Meow, My name is Tom
2.3 存取器
使用 getter 和 setter 可以改变属性的赋值和读取行为:
class Animal {
constructor(name) {
this.name = name;
}
get name() {
return 'Jack';
}
set name(value) {
console.log('setter: ' + value);
}
}
let a = new Animal('Kitty'); // setter: Kitty
a.name = 'Tom'; // setter: Tom
console.log(a.name); // Jack
2.4 静态方法
使用 static
修饰符修饰的方法称为静态方法,它们不需要实例化,而是直接通过类来调用:
class Animal {
static isAnimal(a) {
return a instanceof Animal;
}
}
let a = new Animal('Jack');
Animal.isAnimal(a); // true
a.isAnimal(a); // TypeError: a.isAnimal is not a function
3. ES7 中类的用法
ES7 中有一些关于类的提案,TypeScript 也实现了它们,这里做一个简单的介绍。
3.1 实例属性
class Animal {
name = 'Jack';
constructor() {
// ...
}
}
let a = new Animal();
console.log(a.name); // Jack
3.1 静态属性
ES7 提案中,可以使用 static 定义一个静态属性:
class Animal {
static num = 42;
constructor() {
// ...
}
}
console.log(Animal.num); // 42
4. TypeScript 中类的用法
4.1 public、private 和 protected
TypeScript 可以使用三种访问修饰符(Access Modifiers),分别是 public
、private
和 protected
。
- public 修饰的属性或方法是公有的,可以在任何地方被访问到,默认所有的属性和方法都是 public 的。
- private 修饰的属性或方法是私有的,不能在声明它的类的外部访问。
- protected 修饰的属性或方法是受保护的,它和 private 类似,区别是它在子类中也是允许被访问的。
下面举一些例子:
class Animal {
public name;
public constructor(name) {
this.name = name;
}
}
let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
console.log(a.name); // Tom
上面的例子中,name 被设置为了 public
,所以直接访问实例的 name 属性是允许的。
注意:
- 当构造函数修饰为 private 时,该类不允许被继承或者实例化
- 当构造函数修饰为 protected 时,该类只允许被继承
很多时候,我们希望有的属性是无法直接存取的,这时候就可以用 private
了:
class Animal {
private name;
public constructor(name) {
this.name = name;
}
}
let a = new Animal('Jack');
console.log(a.name);
a.name = 'Tom';
// index.ts(9,13): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
// index.ts(10,1): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
使用 private
修饰的属性或方法,在子类中也是不允许访问的:
class Animal {
private name;
public constructor(name) {
this.name = name;
}
}
class Cat extends Animal {
constructor(name) {
super(name);
console.log(this.name);
}
}
// index.ts(11,17): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
而如果是用 protected
修饰,则允许在子类中访问:
class Animal {
protected name;
public constructor(name) {
this.name = name;
}
}
class Cat extends Animal {
constructor(name) {
super(name);
console.log(this.name);
}
}
4.2 参数属性
修饰符和readonly
还可以使用在构造函数参数中,等同于类中定义该属性同时给该属性赋值,使代码更简洁。
class Animal {
// public name: string;
public constructor(public name) {
// this.name = name;
}
}
4.3 readonly
只读属性关键字,只允许出现在属性声明或索引签名或构造函数中。
class Animal {
readonly name;
public constructor(name) {
this.name = name;
}
}
let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
// index.ts(10,3): TS2540: Cannot assign to 'name' because it is a read-only property.
注意如果 readonly
和其他访问修饰符同时存在的话,需要写在其后面。
class Animal {
// public readonly name;
public constructor(public readonly name) {
// this.name = name;
}
}
4.4 抽象类
abstract
用于定义抽象类和其中的抽象方法。
- 抽象类是不允许被实例化的类。
abstract class Animal {
public name;
public constructor(name) {
this.name = name;
}
public abstract sayHi();
}
let a = new Animal('Jack');
// index.ts(9,11): error TS2511: Cannot create an instance of the abstract class 'Animal'.
上面的例子中,我们定义了一个抽象类 Animal,并且定义了一个抽象方法 sayHi。在实例化抽象类的时候报错了。
- 其次,抽象类中的抽象方法必须被子类实现:
abstract class Animal {
public name;
public constructor(name) {
this.name = name;
}
public abstract sayHi();
}
class Cat extends Animal {
public eat() {
console.log(`${this.name} is eating.`);
}
}
let cat = new Cat('Tom');
// index.ts(9,7): error TS2515: Non-abstract class 'Cat' does not implement inherited abstract member 'sayHi' from class 'Animal'.
上面的例子中,我们定义了一个类 Cat 继承了抽象类 Animal,但是没有实现抽象方法 sayHi,所以编译报错了。
下面是一个正确使用抽象类的例子:
abstract class Animal {
public name;
public constructor(name) {
this.name = name;
}
public abstract sayHi();
}
class Cat extends Animal {
public sayHi() {
console.log(`Meow, My name is ${this.name}`);
}
}
let cat = new Cat('Tom');
4.5 类的类型
给类加上 TypeScript 的类型很简单,与接口类似:
class Animal {
name: string;
constructor(name: string) {
this.name = name;
}
sayHi(): string {
return `My name is ${this.name}`;
}
}
let a: Animal = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack
三、类与接口
接口(Interfaces)可以用于对「对象的形状(Shape)」进行描述。
这里主要介绍接口的另一个用途,接口对类的一部分行为进行抽象。
1. 类实现接口
实现(implements)是面向对象中的一个重要概念。一般来讲,一个类只能继承自另一个类,有时候不同类之间可以有一些共有的特性,这时候就可以把特性提取成接口(interface),用 implements 关键字来实现。这个特性大大提高了面向对象的灵活性。
举例来说,门是一个类,防盗门是门的子类。如果防盗门有一个报警器的功能,我们可以简单的给防盗门添加一个报警方法。这时候如果有另一个类,车,也有报警器的功能,就可以考虑把报警器提取出来,作为一个接口,防盗门和车都去实现它:
interface Alarm {
alert(): void;
}
class Door {
}
class SecurityDoor extends Door implements Alarm {
alert() {
console.log('SecurityDoor alert');
}
}
class Car implements Alarm {
alert() {
console.log('Car alert');
}
}
一个类可以实现多个接口:
interface Alarm {
alert(): void;
}
interface Light {
lightOn(): void;
lightOff(): void;
}
class Car implements Alarm, Light {
alert() {
console.log('Car alert');
}
lightOn() {
console.log('Car light on');
}
lightOff() {
console.log('Car light off');
}
}
上例中,Car 实现了 Alarm 和 Light 接口,既能报警,也能开关车灯。
2. 接口继承接口
接口与接口之间可以是继承关系:
interface Alarm {
alert(): void;
}
interface LightableAlarm extends Alarm {
lightOn(): void;
lightOff(): void;
}
这很好理解,LightableAlarm 继承了 Alarm,除了拥有 alert 方法之外,还拥有两个新方法 lightOn 和 lightOff。
3. 接口继承类(比较特殊)
常见的面向对象语言中,接口是不能继承类的,但是在 TypeScript 中却是可以的:
class Point {
x: number;
y: number;
constructor(x: number, y: number) {
this.x = x;
this.y = y;
}
}
interface Point3d extends Point {
z: number;
}
let point3d: Point3d = {x: 1, y: 2, z: 3};
实际上,当我们在声明 class Point 时,除了会创建一个名为 Point 的类之外,同时也创建了一个名为 Point 的类型(实例的类型)。
所以我们既可以将 Point 当做一个类来用(使用 new Point 创建它的实例):
class Point {
x: number;
y: number;
constructor(x: number, y: number) {
this.x = x;
this.y = y;
}
}
const p = new Point(1, 2);
也可以将 Point 当做一个类型来用(使用 : Point 表示参数的类型):
class Point {
x: number;
y: number;
constructor(x: number, y: number) {
this.x = x;
this.y = y;
}
}
function printPoint(p: Point) {
console.log(p.x, p.y);
}
printPoint(new Point(1, 2));
当我们声明 interface Point3d extends Point 时,Point3d 继承的实际上是类 Point 的实例的类型。
换句话说,可以理解为定义了一个接口 Point3d 继承另一个接口 PointInstanceType。
所以「接口继承类」和「接口继承接口」没有什么本质的区别。
在接口继承类的时候,也只会继承它的实例属性和实例方法。