二叉树的基本操作

博客围绕二叉树基本操作展开,虽未给出具体内容,但可知聚焦于信息技术领域的数据结构中二叉树相关操作,这在数据处理和算法设计等方面有重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<iostream>
#include<queue> 
using namespace std;
//疑问1:如何进行中序进行创建 
typedef struct Node{
	char date;
	Node *lchild,*rchild;
}Node,*BTree;
void PreCreateBTree(BTree &T);//先序创建
void vist(BTree node){cout<<node->date;}
void PreOderBTree(BTree T,void(*vist) (BTree));//先序遍历
void InOderBTree(BTree T,void(*vist) (BTree));//中序遍历 
void CountLeaf(BTree T,int &count);//求叶子节点数
int CountLeaf(BTree T);//求叶子数(左右树之和) 
//求树的高度  //为什么这样就可以????? 
int CountHigh(BTree T);//求树的高度 
int CountD(BTree T);//求树的结点数(左子树节点+右子树节点+根 ) 
void CountD2(BTree T,int &num);//通过遍历一遍求结点 
void LeavelTree(BTree T);//层次遍历 
int count,num;
int main(){
	BTree T;
	PreCreateBTree(T);
	//InOderBTree(T,vist);
	cout<<"层次遍历:"<<endl;
	LeavelTree(T);
	cout<<endl<<"先序遍历:"<<endl;
	PreOderBTree(T,vist);
	cout<<endl;
	CountLeaf(T,count);
	cout<<"叶子数: "<<count<<endl;
	cout<<"叶子数: "<<CountLeaf(T)<<endl;
	cout<<"树高: "<<CountHigh(T)<<endl; 
	cout<<"结点数:"<<CountD(T)<<endl;
	CountD2(T,num);
	cout<<"结点数:"<<num<<endl;
}
void PreCreateBTree(BTree &T){
	char ch;
	cin>>ch;
	if(ch=='#')
		T=NULL;
	else{
		T=new Node;
		if(T==NULL) cout<<"分配空间不足"<<endl;
		T->date=ch;
		PreCreateBTree(T->lchild);
		PreCreateBTree(T->rchild);
	}
}
void PreOderBTree(BTree T,void(*vist) (BTree)){
	if(T){
		vist(T);
		PreOderBTree(T->lchild,vist);
		PreOderBTree(T->rchild,vist);
	}
	else
		cout<<"#";
}
void InOderBTree(BTree T,void(*vist) (BTree)){
	if(T){
		InOderBTree(T->lchild,vist);
		vist(T);
		InOderBTree(T->rchild,vist);
	}
	else
		cout<<"#";
} 
void CountLeaf(BTree T,int &count){
	if(T)
	{
		if(T->lchild==NULL&&T->rchild==NULL)
			count++;
		else{
			CountLeaf(T->lchild,count);
			CountLeaf(T->rchild,count);
		}
	}
}
int CountLeaf(BTree T){
	if(T==NULL)	return 0;
	else{
		if(T->lchild==NULL&&T->rchild==NULL)
			return 1;
		else{
			int l=CountLeaf(T->lchild);
			int r=CountLeaf(T->rchild);
			return l+r;
		}
	}
} 
int CountHigh(BTree T){
	if(!T)
		return 0;
	else{
		int l=CountHigh(T->lchild)+1;
		int r=CountHigh(T->rchild)+1;
		return (l>r)?l:r;
	}
}
int CountD(BTree T){//左子树节点+右子树节点+根 
	if(!T)
		return 0;
	else{
		int l=CountD(T->lchild);
		int r=CountD(T->rchild); 
		return l+r+1;
	}
} 
void CountD2(BTree T,int &num){//遍历求结点数 
	if(T){
			num++;
			CountD2(T->lchild,num);
			CountD2(T->rchild,num);
	}
	else
		num=num+0; 
} 
void LeavelTree(BTree T){
	queue<BTree> myq;
	if(T){
		myq.push(T);
	}
	while(!myq.empty()){
		Node *node=myq.front();
		cout<<node->date;
		myq.pop();
		if(node->lchild)
			myq.push(node->lchild);
		if(node->rchild)
			myq.push(node->rchild);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值