随手翻
文章平均质量分 55
Flying Stone
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自制数据集划分
#coding=utf-8import osimport shutildef split_datasets(path,mode,a,b): os.mkdir(path+mode+'/gt/') os.mkdir(path+mode+'/image/') os.mkdir(path+mode+'/sparedepthmap/') for i in range (a,b): shutil.copy('./image/'+str(i)+'.png', pat原创 2021-08-28 17:05:37 · 214 阅读 · 0 评论 -
Sparsity Invariant CNNs阅读笔记
文章目录问题:网络的输入非常稀疏并且不规则(只有10%的像素携带信息)Depth Completion:问题:网络的输入非常稀疏并且不规则(只有10%的像素携带信息)解决这一问题最简单的方法是为不携带信息的单元设置一个默认值,次优结果introduce a novel sparse convolutional layer which weighs the elements of the con volution kernel according to the validity of the inpu原创 2021-08-28 12:42:07 · 182 阅读 · 0 评论 -
深度补全-PENet_ICRA2021论文梳理和代码阅读记录
input_options = ['d', 'rgb', 'rgbd', 'g', 'gd']kitti_loaders.pydef load_calib(): 使用2011_09_26的calib文件临时硬编码校准矩阵 def get_paths_and_transform(split, args): if split == "train": transform = train_transform glob_d = glob_gt =原创 2021-08-07 16:49:47 · 3685 阅读 · 9 评论 -
pytorch网络提取的特征可视化
import cv2 import numpy as np import os from PIL import Image import matplotlib.pyplot as plt print(x.shape) y=x.clone() y=y.cpu() y=y.numpy() x_show= np.max(y, axis=1) ...原创 2021-05-21 15:10:46 · 233 阅读 · 0 评论 -
pycharm 存在需要解析的参数时调试方法
如果普通运行时需要输入python main.py --config configs/tusimple.py --validate --load_from ./tusimple_resnet34.pth --gpus 0那么需要更改Parameters为--config configs/tusimple.py --validate --load_from ./tusimple_resnet34.pth --gpus 0然后直接运行就解决问题了...原创 2021-05-21 15:09:08 · 313 阅读 · 0 评论 -
VPGNet数据集----mat图片转成jpg
matlab代码Path = 'C:/Users/pc.000/Desktop/scene_2/'; imgPath= dir([Path '2016*.']);savedir='C:/Users/pc.000/Desktop/newfile/';count=100;for son = 1:length(imgPath) sonpath=[Path,imgPath(son).name,'/']; imgDir = dir([sonpath '*.mat']);原创 2021-05-18 16:56:11 · 818 阅读 · 7 评论 -
colab使用记录
!wget https://s3.us-east-2.amazonaws.com/benchmark-frontend/datasets/1/test_set.zip!7za x test_set.zip -o/content/drive/MyDrive/chx原创 2021-05-13 21:35:55 · 221 阅读 · 0 评论 -
RESA: Recurrent Feature-Shift Aggregator for Lane Detection 论文阅读+代码复现(车道线检测)
文章目录RESA: Recurrent Feature-Shift Aggregator for Lane Detectionadvantages:上采样数据集贡献相关工作traditional methodsdeep learning method空间信息利用方法框架设计RESA优点双边上采样译码器Coarse grained branchFine detailed branchExperimentRESA: Recurrent Feature-Shift Aggregator for Lane Det原创 2021-05-11 13:31:33 · 4900 阅读 · 6 评论 -
PyQt5入门和常用模块(含多线程简单例子)
1. 安装软件包pip install PyQt5pip install pyqt5-tools2. 安装Qtdesignersudo apt-get install qt5-default qttools5-dev-toolssudo apt-get install qt5-default qtcreator3.pycharm中配置 external tools4. Tools - external tools 打开 Qtdesigner5.设计完成后转换为py文件pyuic5原创 2021-04-30 21:00:15 · 1312 阅读 · 2 评论 -
Graph-FCN for image semantic segmentation论文阅读(语义分割)
Graph-FCN常见语义分割方法 FCN, Segenet ,Deeplab常用 cross-entropy作为Loss functionSGD algorithm选取FCN-16s为基本模型G(N, E, U)N respects the nodes set of the graph, it is a |N| ∗ S matrix, |N| is the numberof the graph nodes, S is the dimension of the no原创 2021-04-27 15:49:28 · 536 阅读 · 0 评论 -
SCNN -Spatial As Deep: Spatial CNN for Traffic Scene Understanding论文阅读+代码复现(车道线检测)
数据集CULane: 专注四车道问题,并且障碍物另一边的车道没有进行标注TuSimple 和 Caltech Lanes Dataset 的场景都比较简单 ,相比较来说CULane有更强的实际意义.where f is a nonlinear activation function as ReLUHowever, deep residual learning (He et al. 2016) has shown its capability to easy the training of very原创 2021-04-24 17:26:16 · 1016 阅读 · 7 评论 -
Ultra-Fast-Lane-Detection代码复现(车道线检测)
Ultra-Fast-Lane-Detectioncode: https://github.com/cfzd/Ultra-Fast-Lane-Detection环境准备Clone the projectgit clone https://github.com/cfzd/Ultra-Fast-Lane-Detectioncd Ultra-Fast-Lane-DetectionCreate a conda virtual environment and activate itcon原创 2021-04-23 12:34:40 · 7462 阅读 · 12 评论 -
SSH入门记录
SSH如何验证用户The public key can be shared freely without concern, while the private key must be vigilantly guarded and never exposed to anyone.On the remote server, the public key must be copied to a file within the user’s home directory at ~/.ssh/authorize转载 2021-03-25 21:08:00 · 871 阅读 · 0 评论 -
LaneNet-Towards End-to-End Lane Detection: an Instance Segmentation Approach代码复现(车道线检测)
数据生成python data_provider/lanenet_data_feed_pipline.py --dataset_dir ./TuSimple/train_set/training --tfrecords_dir ./data/training_data_example/tfrecords训练python tools/train_lanenet.py --net vgg --dataset_dir ./data/training_data_example -m 0...原创 2021-03-23 11:20:55 · 798 阅读 · 0 评论 -
ubuntu 软件安装报错 has “install-snap“ change in progress
def simple_cnn_branch(input_tensor, small_mode=True): filters = 128 if small_mode else 384 # conv0 = L.Conv2D(128, (1, 1), padding='same')(input_tensor) conv0 = L.Conv2D(256, (3, 3), padding='same')(input_tensor) conv0 = L.BatchNormalizatio原创 2021-03-22 09:35:33 · 245 阅读 · 0 评论 -
样本留存
main.pyfrom utils import *import tensorflow as tffrom models import *from ops import *from scipy.sparse import coo_matrixconfig = tf.compat.v1.ConfigProto(allow_soft_placement=True)config.gpu_options.per_process_gpu_memory_fraction = 0.3tf.compat.原创 2021-03-18 01:34:56 · 206 阅读 · 0 评论 -
GraphSage记录
Epoch 000 batch 0 train accuracy: 0.06727706640958786 val accuracy: 0.06562499701976776 test accuracy:2021-03-18 01:08:50.872527: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 702547200 exceeds 10% of free system memory.train ac...原创 2021-03-17 23:59:38 · 285 阅读 · 3 评论 -
python邻接矩阵转化为字典(邻接表)
A_dict={i: np.nonzero(row)[0].tolist() for i, row in enumerate(A)}一行代码解决问题原创 2021-03-17 22:43:40 · 1865 阅读 · 1 评论 -
gcn torch 实验
常用版本记录比较奇怪的是,用了adjency normlization之后OA不升高,反而降低import itertools #循环器每次返回的对象将赋予给i,直到循环结束from scipy.io import loadmatimport numpy as npimport osimport os.path as ospfrom collections import namedtuple #具名元组import randomimport scipy.sparse as spi原创 2021-03-07 11:51:54 · 276 阅读 · 0 评论 -
数据预处理
clc;clear;close all;I = double(imread('Houston.tif'));[m, n, z] = size(I);TR = double(imread('Houston_train.tif'));TE = double(imread('Houston_test.tif')); I2d = hyperConvert2d(I);for i = 1 : z I2d(i, :) = mat2gray(I2d(i, :)); %每一个维度归一化en原创 2021-03-08 16:53:58 · 760 阅读 · 2 评论 -
spektral gcn实验
from spektral.datasets import Citationimport numpy as npimport pickle as pklimport networkx as nximport scipy.sparse as spfrom scipy.sparse.linalg.eigen.arpack import eigshimport sysimport scipy.io as sciofrom scipy.io import loadmatfrom scipy.spa原创 2021-03-06 20:58:46 · 965 阅读 · 0 评论 -
Spektral 示例代码记录
需要import的库import numpy as npimport tensorflow as tffrom tensorflow.keras.callbacks import EarlyStoppingfrom tensorflow.keras.losses import CategoricalCrossentropyfrom tensorflow.keras.optimizers import Adamfrom spektral.data.loaders import SingleLoa原创 2021-03-06 13:50:42 · 1284 阅读 · 5 评论 -
多源融合-Lidar部分程序记录2021/3/2
KERAStrained weight_lidar_weights = "logs/weights/TRENTO_lidar_weights-0.8517.h5"_hsi_weights = "logs/weights/TRENTO_hsi_weights-0.9535.h5"_full_weights = "logs/weights/Hou_weights_finetune-0.8798.h5"save weights_weights_h = "logs/weights/TRENTO_hsi原创 2021-03-03 10:53:19 · 311 阅读 · 2 评论 -
conda环境记录
1.torchenv pytorch版本的gcn库2.Lane 车道线检测3. tfgcntwobranch tensorflow 版本的gcn库 以 多源融合4.tensorflowenv 主要是整理一下3多源融合requirmentstensorflow-gpu用conda,其他用pipKeras>=2.1.2numpy>=1.13.3opencv-python>=3.4.0.12scipy>=0.19.1six>=1.11.0tensorfl原创 2021-03-01 23:36:32 · 181 阅读 · 0 评论 -
自动驾驶教程:From Pixels to Meters
Inverse perspective mapping测到哪些像素坐标 (u,v)(u,v)(u,v) 是车道边界的一部分之后,我们现在想要知道哪些3维点 (Xc,Yc,Zc)(X_c,Y_c,Z_c)(Xc,Yc,Zc)对应于这些像素坐标。首先让我们再次看一下这个图像形成过程的草图:请记住:给定相机参考系中的3维点(Xc,Yc,Zc)(X_c,Y_c,Z_c)(Xc,Yc,Zc),我们可以通过以下方法获得像素坐标(u,v)(u,v)(u,v)但是我们现在需要做的是解决逆问题。我们已经翻译 2021-02-08 00:14:52 · 397 阅读 · 0 评论 -
自动驾驶教程阅读:Lane Boundary Segmentation
Lane Boundary Segmentation对于我们的车道检测pipeline,我们想训练一个神经网络,该神经网络拍摄一张图像,并为每个像素估计它属于左车道边界的概率,它属于右车道边界的概率以及它既不属于。这个问题叫做语义分割。Prerequisites在本节中,我假设以下内容:1.您知道什么是神经网络,并且之前已经接受过训练。2.您知道语义分段的概念如果您不满足前提条件1,我建议您使用以下免费资源CS231n: Convolutional Neural Networks for V翻译 2021-02-07 17:55:36 · 767 阅读 · 0 评论 -
自动驾驶教程阅读:Basics of Image Formation
这里写目录标题Basics of Image Formation数字图像针孔相机Reference frames练习:将车道边界投影到图像中Basics of Image Formation数字图像图像由像素网格组成如下图所示为了表示图像,我们使用形状为(H,W,3)的三维数组。我们说该数组有H行,W列和3个颜色通道(红色,绿色和蓝色)。让我们用python加载图片,看看吧!import numpy as npimport matplotlib.pyplot as pltfrom pathl翻译 2021-02-06 12:48:02 · 222 阅读 · 0 评论
分享