A novel translation estimation for essential matrix based stereo visual odometry

论文采用的基于本征矩阵分解式的VO,传统方法一般先算出三维点坐标再计算相机之间的平移,那么相机之间的平移会受限于三维点的精度。这篇文章剔除了一种基于本征矩阵分解式的VO三维点的解算,它避免了三维坐标的不确定性对VIO精度的影响。Rotation的来源于五点法,with a pre-estimated rotation matrix, the translation is rapidly and accurately estimated by solving a proposed linear closedform only using 2D features as input with one-point RANSAC.

论文的一些观点:conclude that the 2D-to-2D and 3D-to-2D methods provide higher accuracy in pose estimation than 3D-to-3D one due to the uncertainty of the 3D feature. We can say that the more portion of 3D features using in the VO pipeline, the higher error in pose estimation compared to the groundtruth.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值