def dice_coef(y_true, y_pred, axis=(1, 2), smooth=1.):
intersection = tf.reduce_sum(y_true * y_pred, axis=axis)
union = tf.reduce_sum(y_true + y_pred, axis=axis)
numerator = tf.constant(2.) * intersection + smooth
denominator = union + smooth
coef = numerator / denominator
return tf.reduce_mean(coef)
def dice_coef_loss(target, prediction, axis=(1, 2), smooth=1.):
"""
"""
intersection = tf.reduce_sum(prediction * target, axis=axis)
p = tf.reduce_sum(prediction, axis=axis)
t = tf.reduce_sum(target, axis=axis)
numerator = tf.reduce_mean(intersection + smooth)
denominator = tf.reduce_mean(t + p + smooth)
dice_loss = -tf.log(2.*numerator) + tf.log(denominator)
return dice_loss
def combined_dice_ce_loss(y_true, y_pred, axis=(1, 2), smooth=1.,
weight=args.weight_dice_loss):
"""
Combined Dice and Binary Cross Entropy Loss
"""
return weight*dice_coef_loss(y_true, y_pred, axis, smooth) + \
(1-weight)*K.losses.binary_crossentropy(y_true, y_pred)
dice损失函数
最新推荐文章于 2025-05-22 09:59:23 发布
本文介绍了Dice系数及其在深度学习中的应用,包括Dice损失函数和结合了二元交叉熵的复合损失函数。这些函数常用于图像分割任务中评估模型性能。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
4148





