import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
# 定义超参数
batch_size = 100
learning_rate = 1e-3
num_epoches = 2
# 下载训练集 MNIST 手写数字训练集
train_dataset = datasets.MNIST(
root='F:/PycharmProjects/pytorch-beginner-master/02-Logistic Regression/data', train=False, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(
root='F:/PycharmProjects/pytorch-beginner-master/02-Logistic Regression/data', train=False, transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义 Recurrent Network 模型
class Rnn(nn.Module):
def __init__(self, in_dim, hidden_dim, n_layer, n_class):
super(Rnn, self).__init__()
self.n_layer = n_layer
self.hidden_dim = hidden_dim
#输入[seq_len=100,batch_size=28,input_size=28] 输出为(seq_len=100,batch_size=28,num_directions*hidden_size) hidden_size = hidden_dim=128
self.lstm = nn.LSTM(in_dim, hidden_dim, n_layer, batch_first=True)
self.classifier = nn.Linear(hidden_dim, n_class)#输入为[100,128]输出为:[100,10]
def forward(self, x):
out, _ = self.lstm(x)#out=[100,28,128]
out = out[:, -1, :]#out[100,128]
out = self.classifier(out)#out=[100,10]
return out
model = Rnn(28, 128, 2, 10) # 图片大小是28x28
use_gpu = torch.cuda.is_available() # 判断是否有GPU加速
if use_gpu:
model = model.cuda()
# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 开始训练
for epoch in range(num_epoches):
print('epoch {}'.format(epoch + 1))
print('*' * 10)
model.train()
for i, data in enumerate(train_loader, 1):
img, label = data
#b, c, h, w = img.size()
#assert c == 1, 'channel must be 1'
img = img.squeeze(1)#将输入张量形状中的1 去除 比如输入为[2,1,3,5,1]的5维矩阵,去掉1后变为[2,3,5]的3维矩阵
# img = img.view(b*h, w)
# img = torch.transpose(img, 1, 0)
# img = img.contiguous().view(w, b, -1)
if use_gpu:
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
# 向前传播
out = model(img)#输入[seq_len=100,batch_size=28,input_size=28]
loss = criterion(out, label)
# 向后传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
# if i % 300 == 0:
# print("loss: ", loss.data.item())
print("loss: ", loss.data.item())
model.eval()
for data in test_loader:
img, label = data
b, c, h, w = img.size()
assert c == 1, 'channel must be 1'
img = img.squeeze(1)
# img = img.view(b*h, w)
# img = torch.transpose(img, 1, 0)
# img = img.contiguous().view(w, b, h)
if use_gpu:
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
out = model(img)
loss = criterion(out, label)
print("test loss: ", loss.data.item())