基于pytorch实现ResNet

本文详细介绍了如何基于PyTorch框架构建ResNet网络,包括BasicBlock和Bottleneck模块的定义,参数初始化和不同ResNet变种的实现。适合初学者理解深度学习中的残差网络结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于pytorch框架 实现ResNet网络 (参考pytorch官方文档)

from torch import nn
import torch
import torchvision.models
from torch.utils.tensorboard import SummaryWriter

# 因为 ResNet 中只包含 3x3 和 1x1 卷积,下面定义这两种卷积
def con3x3(in_channel, out_channel, stride = 1 ):
    # 定义 3x3 卷积
    return nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1, bias=False)

def con1x1(in_channel, out_channel, stride = 1):
    return  nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, bias=False)

class BasicBlock(nn.Module): # resnet 18/34 拥有相同的 basicblock
    expansion = 1 # 最后一个卷积输出的通道和第一个卷积输出通道的比值

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        # 实现子 module:Basic Block
        super(BasicBlock, self).__init__()

        self.conv1 = con3x3(in_channel, out_channel, stride=stride)
        # self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)

        self.conv2 = con3x3(out_channel, out_channel)
        # self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample  # 是否执行下采样 一个 stage 结束之后要下采样 图片的 H 和 W 变为原来的 1/2
        self.stride = stride

    def forward(self, x):
        identity = x  # 跨层连接

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out = out + identity
        out = self.relu(out) # 这里注意是先和identity相加,再relu

        return out

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        # 实现 Bottle Neck
        super(Bottleneck, self).__init__()

        self.conv1 = con1x1(in_channel, out_channel)
        # self.conv1 =nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)

        self.conv2 = con3x3(out_channel, out_channel, stride=stride)
        # self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.conv3 = con1x1(out_channel,out_channel * self.expansion)
        # self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out = out + identity
        out = self.relu(out)

        return out

class ResNet(nn.Module):
    """
    __init__
        block: 堆叠的基本模块[BasicBlock, Bottelneck]
        block_num: 基本模块堆叠个数
        num_classes: 全连接之后的类别个数
    """
    def __init__(self, block, block_num, num_classes=1000):
        super(ResNet, self).__init__()

        self.in_channel = 64 # conv1 的输入维度

        # conv1:经过一个7x7的conv和一个3x3的最大池化层,input:[224*224*3] output: [112*112*64]
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # conv2_x -> conv5_x
        self.layer1 = self._make_layer(block=block, channel=64, block_num=block_num[0], stride=1)
        self.layer2 = self._make_layer(block=block, channel=128, block_num=block_num[1], stride=2)
        self.layer3 = self._make_layer(block=block, channel=256, block_num=block_num[2], stride=2)
        self.layer4 = self._make_layer(block=block, channel=512, block_num=block_num[3], stride=2)

        # avgpool + 1000-fc
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, channel, block_num, stride=1):
        """
            block: 堆叠的基本模块
            channel: 每个stage中堆叠模块的第一个卷积的卷积核个数,对于 resnet 来说分别是:64,128,256,512
            block_num: 当期stage堆叠block个数
            stride: 默认卷积步长
        """
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                con1x1(self.in_channel, channel * block.expansion, stride=stride),
                # nn.Conv2d(in_channels=self.in_channel, out_channels=channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion),
            )
        layers = []
        layers.append(block(in_channel=self.in_channel, out_channel=channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion # 下一个 stage 的输入通道为当前stage输出通道的 expansion倍

        for _ in range(1, block_num):
            layers.append(block(in_channel=self.in_channel, out_channel=channel))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

def resnet18(num_classes=10):
    return ResNet(block=BasicBlock, block_num=[2, 2, 2, 2], num_classes=num_classes)

def resnet34(num_classes=10):
    return ResNet(block=BasicBlock, block_num=[3, 4, 6, 3], num_classes=num_classes)

def resnet50(num_classes=10):
    return ResNet(block=Bottleneck, block_num=[3, 4, 6, 3], num_classes=num_classes)

def resnet101(num_classes=10):
    return ResNet(block=Bottleneck, block_num=[3, 4, 23, 3], num_classes=num_classes)

def resnet52(num_classes=10):
    return ResNet(block=Bottleneck, block_num=[3, 8, 36, 3], num_classes=num_classes)

# 简单的测试当前代码的正确性,可以去掉备注使用
# if __name__ == '__main__':
#     input = torch.ones(1, 3, 224, 224)  # BatchSize C H W
#     print(input.shape)
#     Net = resnet50(10)
#     output = Net.forward(input)
#     print(Net)
#
# writer = SummaryWriter("log_net50")
# writer.add_graph(Net, input)
# writer.close()

### 回答1: 以下是基于 PyTorch 实现 ResNet34 的代码: ```python import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet34'] model_urls = { 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=100): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, ) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(), -1) x = self.fc(x) return x def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model ``` 希望对你有所帮助! ### 回答2: 以下是一个基于PyTorch实现ResNet34的代码示例: ```python import torch import torch.nn as nn # 定义残差块 class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.stride = stride if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) else: self.shortcut = nn.Sequential() def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += self.shortcut(residual) out = self.relu(out) return out # 定义ResNet34 class ResNet34(nn.Module): def __init__(self, num_classes=1000): super(ResNet34, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(64, 64, 3) self.layer2 = self._make_layer(64, 128, 4, stride=2) self.layer3 = self._make_layer(128, 256, 6, stride=2) self.layer4 = self._make_layer(256, 512, 3, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def _make_layer(self, in_channels, out_channels, num_blocks, stride=1): layers = [] layers.append(ResidualBlock(in_channels, out_channels, stride)) for _ in range(1, num_blocks): layers.append(ResidualBlock(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x # 创建ResNet34的实例 model = ResNet34() # 使用模型进行训练或推理 input_data = torch.randn(1, 3, 224, 224) output = model(input_data) print(output.shape) ``` 这段代码实现了基于PyTorchResNet34模型。它定义了一个残差块(ResidualBlock)的类和一个ResNet34模型的类。在ResidualBlock中,通过两个卷积层和批归一化层实现残差连接。ResNet34类包含多个残差块组成的层。最后,模型通过全局平均池化层和全连接层生成预测结果。在使用模型之前,可以创建一个ResNet34的实例,并使用输入数据进行训练或推理。 ### 回答3: 基于PyTorch实现ResNet34的代码如下: ```python import torch import torch.nn as nn import torchvision.models as models # 定义ResNet34网络结构 class ResNet34(nn.Module): def __init__(self, num_classes=1000): super(ResNet34, self).__init__() self.resnet34 = models.resnet34(pretrained=True) # 冻结所有卷积层参数 for param in self.resnet34.parameters(): param.requires_grad = False # 替换最后一层全连接层 self.resnet34.fc = nn.Linear(512, num_classes) def forward(self, x): x = self.resnet34(x) return x # 创建ResNet34模型实例 model = ResNet34() # 加载预训练权重 model.load_state_dict(torch.load('resnet34.pth')) # 输入数据 input_data = torch.randn(1, 3, 224, 224) # 前向传播 output = model(input_data) # 打印输出结果 print(output) ``` 在代码中,我们使用了PyTorch的torchvision库,其中包含了常用的深度学习模型,包括ResNet。首先,我们定义了一个名为ResNet34的类,继承自nn.Module。在类的构造函数中,我们使用`models.resnet34(pretrained=True)`加载了预训练的ResNet34模型,并将其赋值给self.resnet34。 然后,我们通过遍历self.resnet34的参数来冻结所有的卷积层参数,这是因为我们只需要训练最后一层全连接层。接下来,我们替换了最后一层全连接层,将输出类别数目设为num_classes。 在前向传播函数forward中,我们调用了self.resnet34进行前向传播,并返回输出结果。 最后,我们创建了一个ResNet34的实例model,并加载了预训练权重。然后,我们创建一个输入数据input_data,并进行前向传播,得到输出结果output。最后,我们打印输出结果。 这样,我们就实现了基于PyTorchResNet34模型的代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值