图片的降噪处理 java_Java 图像噪声工具类

这个Java类`NoiseFilter`实现了两种类型的图片降噪处理:脉冲噪声和高斯噪声。通过设置不同的参数,可以调整脉冲噪声的比率和高斯噪声的标准偏差。类中包含`impulseNoise`和`gaussianNoise`方法,分别处理这两种类型的噪声,对输入的`BufferedImage`进行处理并返回处理后的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import java.awt.image.*;public class NoiseFilter extends Filter {

public final static int IMPULSE= 0;public final static int GAUSSIAN= 1;protected int noiseType= IMPULSE;protected double stdDev= 10.0;protected double impulseRatio= 0.05;public NoiseFilter() {

}

public NoiseFilter(int noiseType) {

setNoiseType(noiseType);}

public NoiseFilter(int noiseType,double parameter) {

setNoiseType(noiseType);if (noiseType== IMPULSE) setImpulseRatio(parameter); if (noiseType == GAUSSIAN) setGaussianStdDev(parameter);}

public void setNoiseType(int noiseType) {

this.noiseType= noiseType;}

public int getNoiseType() {

return noiseType;}

public void setGaussianStdDev(double stdDev) {

this.stdDev= stdDev;}

public double getGaussianStdDev() {

return stdDev;}

public void setImpulseRatio(double impulseRatio) {

this.impulseRatio= impulseRatio;}

public double getImpulseRatio() {

return impulseRatio;}

public java.awt.image.BufferedImage filter(BufferedImage image,BufferedImage output) {

output= verifyOutput(output, image);switch (noiseType) {

default:

case IMPULSE: return impulseNoise(image, output); case GAUSSIAN: return gaussianNoise(image, output);}

}

protected BufferedImage impulseNoise(BufferedImage image,BufferedImage output) {

output.setData(image.getData());Raster source= image.getRaster(); WritableRaster out = output.getRaster();double rand; double halfImpulseRatio = impulseRatio / 2.0; int bands = out.getNumBands(); int width = image.getWidth();// width of the image

int height = image.getHeight();// height of the image

java.util.Random randGen = new java.util.Random();for (int j=0;j

for (int i=0;i

rand = randGen.nextDouble();if (rand < halfImpulseRatio) {

for (int b=0;b

} else if (rand < impulseRatio) {

for (int b=0;b

}

}

}

return output;}

protected BufferedImage gaussianNoise(BufferedImage image,BufferedImage output) {

Raster source= image.getRaster(); WritableRaster out = output.getRaster();int currVal;// the current value

double newVal;// the new "noisy" value

double gaussian;// gaussian number

int bands = out.getNumBands();// number of bands

int width = image.getWidth();// width of the image

int height = image.getHeight();// height of the image

java.util.Random randGen = new java.util.Random();for (int j=0;j

for (int i=0;i

gaussian = randGen.nextGaussian();for (int b=0;b

newVal = stdDev * gaussian; currVal = source.getSample(i, j, b); newVal = newVal + currVal; if (newVal < 0) newVal = 0.0; if (newVal > 255) newVal = 255.0;out.setSample(i, j, b, (int)(newVal));}

}

}

return output;}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值